Enhanced Human Crawling Phase Recognition Based on Kinematic Synergies and Machine Learning

爬行 运动学 人工智能 支持向量机 计算机科学 模式识别(心理学) 主成分分析 机器学习 线性判别分析 加速度计 医学 经典力学 解剖 操作系统 物理
作者
Qiliang Xiong,Xiaolong Shu,Liu Bo,Ying Chen
出处
期刊:Journal of biomechanical engineering [ASM International]
卷期号:: 1-44
标识
DOI:10.1115/1.4068865
摘要

Abstract Background: Hands-and-knees crawling, an effective rehabilitation method for children with motor impairments, requires precise phase detection for optimizing assistive devices. However, research on phase detection in human crawling remains limited. The research explores whether multi-joint kinematic synergy features provide better accuracy than traditional time-domain features. Methods: Nine healthy adults participated in the study, where accelerometers and pressure sensors were used to capture motion data during crawling. The data were pre-processed and used to define four distinct phases of crawling and kinematic synergy features were extracted using Singular Value Decomposition (SVD)-based Principal Component Analysis (PCA). Machine learning models, including Classification and Regression Trees (CART), K-Nearest Neighbors (KNN), and Error-Correcting Output Codes Support Vector Machines (ECOC-SVM), were trained to recognize the crawling phases. Their performance was compared to that of time-domain features. Results: The phase recognition method based on multi-joint kinematic synergies achieved an average accuracy of 89.37%. Specifically, the accuracy for CART was 88.41%, for KNN was 85.51%, and for ECOC-SVM was 94.20%. In comparison, the phase recognition using traditional time-domain features yielded lower accuracy, with overall accuracies of 78.98% for CART, 76.09% for KNN, and 85.51% for ECOC-SVM Conclusion: The findings demonstrate that using kinematic synergy features significantly improves the accuracy of crawling phase recognition compared to traditional time-domain features. This research provides valuable insights into the design and control of rehabilitation robots based on human kinematic synergies

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
songf11发布了新的文献求助10
1秒前
霍楠完成签到,获得积分10
1秒前
linfordlu完成签到,获得积分0
2秒前
2秒前
斯文的慕儿完成签到,获得积分10
3秒前
SION完成签到,获得积分20
3秒前
Titi完成签到 ,获得积分10
5秒前
六步郎完成签到,获得积分10
5秒前
Neil完成签到,获得积分10
6秒前
蛋花肉圆汤完成签到,获得积分10
7秒前
所所应助细心的小懒虫采纳,获得10
8秒前
瑶儿发布了新的文献求助10
8秒前
Andy完成签到,获得积分10
9秒前
WN完成签到,获得积分10
10秒前
尚影芷发布了新的文献求助10
10秒前
今后应助陈俊儒采纳,获得10
10秒前
南风旧巷完成签到,获得积分10
11秒前
想飞的猪完成签到,获得积分10
11秒前
一颗小洋葱完成签到 ,获得积分10
12秒前
清浅溪完成签到 ,获得积分10
12秒前
跳跃的冷卉完成签到 ,获得积分10
12秒前
13秒前
单薄月饼完成签到,获得积分10
13秒前
陈宗琴完成签到,获得积分10
13秒前
yang完成签到 ,获得积分10
13秒前
美丽的仙人掌完成签到,获得积分10
13秒前
14秒前
mk建杨完成签到,获得积分10
15秒前
1234完成签到,获得积分10
15秒前
lin发布了新的文献求助10
16秒前
LXx完成签到 ,获得积分10
17秒前
养花低手完成签到 ,获得积分10
18秒前
18秒前
18秒前
仁爱海莲完成签到,获得积分10
19秒前
成成完成签到,获得积分0
19秒前
jyy发布了新的文献求助10
19秒前
不必要再讨论适合与否完成签到,获得积分0
21秒前
22秒前
23秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885972
求助须知:如何正确求助?哪些是违规求助? 3428049
关于积分的说明 10757554
捐赠科研通 3152851
什么是DOI,文献DOI怎么找? 1740676
邀请新用户注册赠送积分活动 840338
科研通“疑难数据库(出版商)”最低求助积分说明 785317