Deep learning‐based cone‐beam CT motion compensation with single‐view temporal resolution

人工智能 计算机视觉 计算机科学 运动补偿 投影(关系代数) 基本事实 迭代重建 图像质量 运动(物理) 锥束ct 算法 计算机断层摄影术 图像(数学) 医学 放射科
作者
Joscha Maier,Stefan Sawall,Marcel Arheit,Pascal Paysan,Marc Kachelrieß
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17911
摘要

Abstract Background Cone‐beam CT (CBCT) scans that are affected by motion often require motion compensation to reduce artifacts or to reconstruct 4D (3D+time) representations of the patient. To do so, most existing strategies rely on some sort of gating strategy that sorts the acquired projections into motion bins. Subsequently, these bins can be reconstructed individually before further post‐processing may be applied to improve image quality. While this concept is useful for periodic motion patterns, it fails in case of non‐periodic motion as observed, for example, in irregularly breathing patients. Purpose To address this issue and to increase temporal resolution, we propose the deep single angle‐based motion compensation (SAMoCo). Methods To avoid gating, and therefore its downsides, the deep SAMoCo trains a U‐net‐like network to predict displacement vector fields (DVFs) representing the motion that occurred between any two given time points of the scan. To do so, 4D clinical CT scans are used to simulate 4D CBCT scans as well as the corresponding ground truth DVFs that map between the different motion states of the scan. The network is then trained to predict these DVFs as a function of the respective projection views and an initial 3D reconstruction. Once the network is trained, an arbitrary motion state corresponding to a certain projection view of the scan can be recovered by estimating DVFs from any other state or view and by considering them during reconstruction. Results Applied to 4D CBCT simulations of breathing patients, the deep SAMoCo provides high‐quality reconstructions for periodic and non‐periodic motion. Here, the deviations with respect to the ground truth are less than 27 HU on average, while respiratory motion, or the diaphragm position, can be resolved with an accuracy of about 0.75 mm. Similar results were obtained for real measurements where a high correlation with external motion monitoring signals could be observed, even in patients with highly irregular respiration. Conclusions The ability to estimate DVFs as a function of two arbitrary projection views and an initial 3D reconstruction makes deep SAMoCo applicable to arbitrary motion patterns with single‐view temporal resolution. Therefore, the deep SAMoCo is particularly useful for cases with unsteady breathing, compensation of residual motion during a breath‐hold scan, or scans with fast gantry rotation times in which the data acquisition only covers a very limited number of breathing cycles. Furthermore, not requiring gating signals may simplify the clinical workflow and reduces the time needed for patient preparation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucfer完成签到 ,获得积分10
1秒前
CC发布了新的文献求助50
1秒前
米花完成签到 ,获得积分10
2秒前
3秒前
dsd完成签到,获得积分10
4秒前
ddg关闭了ddg文献求助
6秒前
qise完成签到,获得积分10
6秒前
7秒前
7秒前
chebo完成签到,获得积分20
8秒前
美丽发布了新的文献求助10
8秒前
bkagyin应助CC采纳,获得10
8秒前
orixero应助Logan采纳,获得30
10秒前
10秒前
12秒前
Singularity应助千互采纳,获得10
12秒前
uu发布了新的文献求助10
13秒前
毛毛毛毛小毛完成签到 ,获得积分10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
迷恋应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
彭于彦祖应助科研通管家采纳,获得80
15秒前
zxz应助科研通管家采纳,获得30
15秒前
15秒前
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902656
求助须知:如何正确求助?哪些是违规求助? 3447386
关于积分的说明 10848870
捐赠科研通 3172725
什么是DOI,文献DOI怎么找? 1753080
邀请新用户注册赠送积分活动 847530
科研通“疑难数据库(出版商)”最低求助积分说明 790042