Neural Network–Enhanced Electrochemical/SERS Dual-Mode Microfluidic Platform for Accurate Detection of Interleukin-6 in Diabetic Wound Exudates

化学 微流控 纳米技术 双模 电化学 生物医学工程 航空航天工程 电极 医学 工程类 物理化学 材料科学
作者
Mingrui Chen,Guan Liu,Li Wang,Amin Zhang,Ziyang Yang,Xia Li,Zhong Zhang,Song Gu,Daxiang Cui,Hossam Haick,Ning Tang
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c05537
摘要

Interleukin-6 (IL-6) plays a pivotal role in the inflammatory response of diabetic wounds, providing critical insights for clinicians in the development of personalized treatment strategies. However, the low concentration of IL-6 in biological samples, coupled with the presence of numerous interfering substances, poses a significant challenge for its rapid and accurate detection. Herein, we present a dual-mode microfluidic platform integrating electrochemical (EC) and surface-enhanced Raman spectroscopy (SERS) to achieve the timely and highly reliable quantification of IL-6. Efficient binding between IL-6 and antibody-conjugated SERS nanoprobes is obtained through a square-wave micromixer with nonleaky obstacles, forming sandwich immunocomplexes with IL-6 capture antibodies on the working electrode in the detection area, enabling acquisition of both EC and SERS signals. This microfluidic platform demonstrates excellent selectivity and sensitivity, with detection limits of 0.085 and 0.047 pg/mL for EC and SERS modes, respectively. Importantly, by incorporating a neural network (NN) with a self-attention (SA) mechanism to evaluate the relative weights of data from both modes, the platform achieves a quantitative accuracy of up to 99.8% across a range of 0.05–1000 pg/mL, demonstrating significant performance at low concentrations. Moreover, the NN-enhanced dual-mode microfluidic platform effectively detects IL-6 in diabetic wound exudates with results that align closely with clinical data. This integrated dual-mode microfluidic platform offers promising potential for the rapid and accurate detection of cytokines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
末了未了应助科研通管家采纳,获得10
刚刚
xlj完成签到 ,获得积分10
刚刚
刚刚
orixero应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
李健应助科研通管家采纳,获得10
刚刚
里lilili应助WANG采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
由由完成签到,获得积分10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
ding完成签到,获得积分10
刚刚
SciGPT应助科研通管家采纳,获得10
1秒前
CR7应助科研通管家采纳,获得20
1秒前
烟花应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
苏灿应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
别管我了应助HM采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得50
1秒前
黎剑成发布了新的文献求助10
2秒前
YK关闭了YK文献求助
3秒前
Anonymous发布了新的文献求助10
3秒前
4秒前
PPPPP星星完成签到,获得积分10
4秒前
4秒前
5秒前
深情的大碗完成签到 ,获得积分10
6秒前
今夜不设防完成签到,获得积分10
6秒前
畅快的乐巧完成签到 ,获得积分10
6秒前
αβ发布了新的文献求助10
7秒前
灵溪完成签到 ,获得积分10
7秒前
la完成签到,获得积分20
8秒前
调皮飞雪发布了新的文献求助10
8秒前
小星星发布了新的文献求助10
9秒前
Ashmitte完成签到,获得积分10
10秒前
maguodrgon完成签到,获得积分20
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3938310
求助须知:如何正确求助?哪些是违规求助? 3483908
关于积分的说明 11025874
捐赠科研通 3213871
什么是DOI,文献DOI怎么找? 1776318
邀请新用户注册赠送积分活动 862506
科研通“疑难数据库(出版商)”最低求助积分说明 798490