Unraveling the reaction mechanisms in a chemically-amplified EUV photoresist from a combined theoretical and experimental approach

光刻胶 极紫外光刻 材料科学 纳米技术 图层(电子)
作者
Laura Galleni,D. P. Singh,Thierry Conard,Geoffrey Pourtois,P.A.W. van der Heide,John S. Petersen,Kevin M. Dorney,Michiel J. van Setten
标识
DOI:10.1117/12.3051002
摘要

Extreme ultraviolet (EUV) lithography has revolutionized high-volume manufacturing of nanoscale components, enabling the production of smaller, denser, and more energy efficient integrated circuit devices. Yet, the use of EUV light results in ionization driven chemistry within the imaging materials of lithography, the photoresists. The complex interplay of ionization, generation of primary and secondary electrons, and the subsequent chemical mechanisms leading to image formation in photoresists has been notoriously difficult to study. In this work, we deploy photoemission spectroscopy with a 92 eV EUV light source combined with first-principles simulations to unravel the chemical changes occurring during exposure in a model chemically amplified photoresist. The results reveal a surprising chemical reaction pathway, namely the EUV-induced breakdown of the photoacid generator (PAG), which is a critical component in the EUV mechanism. This previously unobserved reaction mechanism manifests as changes in intensity of the valence band peaks of the EUV photoemission spectrum, which are linked to degradation of the PAG via an advanced atomistic simulation framework. Our combined experimental and theoretical approach shows that EUV photoemission can simultaneously resolve chemical dynamics and the production of primary and secondary electrons, giving unique insights into the chemical transformation of photoresist materials. Our results pave the way for utilizing accessible, table-top EUV spectroscopy systems for observing EUV photoresist chemical dynamics, with the potential for time-resolved measurements of photoemission processes in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布丁拿铁发布了新的文献求助10
刚刚
随便起个吧完成签到 ,获得积分10
刚刚
刚刚
FashionBoy应助Legend采纳,获得10
刚刚
1秒前
1秒前
优美紫槐发布了新的文献求助10
1秒前
hyeah应助激情的含巧采纳,获得10
1秒前
斯文败类应助thchiang采纳,获得10
3秒前
2333发布了新的文献求助10
3秒前
朱洛尘完成签到 ,获得积分10
5秒前
5秒前
魔猿发布了新的文献求助10
5秒前
卟卟高升完成签到 ,获得积分10
5秒前
5秒前
7秒前
我的娃完成签到,获得积分10
8秒前
落后成仁关注了科研通微信公众号
8秒前
小二郎应助丘奇采纳,获得10
8秒前
Moly完成签到,获得积分10
10秒前
张虹完成签到,获得积分10
11秒前
Breeze完成签到,获得积分10
12秒前
所所应助2333采纳,获得10
12秒前
WangLu2025发布了新的文献求助30
12秒前
JamesPei应助柯不正采纳,获得30
13秒前
小蘑菇应助MHB采纳,获得10
15秒前
彭于晏应助卜谷雪采纳,获得10
16秒前
16秒前
16秒前
旁观者应助wangjinweige6293采纳,获得10
17秒前
aaaaaa发布了新的文献求助20
19秒前
19秒前
布丁拿铁完成签到 ,获得积分10
19秒前
所所应助zzc采纳,获得10
19秒前
寒安发布了新的文献求助50
19秒前
量子星尘发布了新的文献求助30
20秒前
20秒前
佛系养生发布了新的文献求助10
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730272
求助须知:如何正确求助?哪些是违规求助? 5322398
关于积分的说明 15318370
捐赠科研通 4876855
什么是DOI,文献DOI怎么找? 2619709
邀请新用户注册赠送积分活动 1569121
关于科研通互助平台的介绍 1525755