Optimized lightweight CA-transformer: Using transformer for fine-grained visual categorization

计算机科学 过度拟合 变压器 人工智能 特征提取 机器学习 安全性令牌 模式识别(心理学) 人工神经网络 电压 工程类 计算机安全 电气工程
作者
Haiqing Wang,Shuqi Shang,Dongwei Wang,Xiaoning He,Kai Feng,Hao Zhu,Cheng‐Peng Li,Yuetao Wang
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:71: 101827-101827 被引量:8
标识
DOI:10.1016/j.ecoinf.2022.101827
摘要

As a rapidly developing research direction in computer vision (CV), related algorithms such as image classification and object detection have achieved inevitable research progress. Improving the accuracy and efficiency of algorithms for fine-grained identification of plant diseases and birds in agriculture is essential to the dynamic monitoring of agricultural environments. In this study, based on the computer vision detection and classification algorithm, combined with the architecture and ideas of the CNN model, the mainstream Transformer model was optimized, and then the CA-Transformer (Transformer Combined with Channel Attention) model was proposed to improve the ability to identify and classify critical areas. The main work is as follows: (1) The C-Attention mechanism is proposed to strengthen the feature information extraction within the patch and the communication between feature information so that the entire network can be fully attentive while reducing the computational overhead; (2) The weight-sharing method is proposed to transfer parameters between different layers, improve the reusability of model data, and at the same time increase the knowledge distillation link to reduce problems such as excessive parameters and overfitting; (3) Token Labeling is proposed to generate score labels according to the position of each Token, and the total loss function of this study is proposed according to the CA-Transformer model structure. The performance of the CA-Transformer model proposed in this study is compared with the current mainstream models on datasets of different scales, and ablation experiments are performed. The results show that the accuracy and mIoU of the CA-Transformer proposed in this study reach 82.89% and 53.17MS, respectively, and have good transfer learning ability, indicating that the model has good performance in fine-grained visual categorization tasks and can be used in ecological information. In the context of more diverse ecological information, this study can provide reference and inspiration for the practical application of information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
hololoo发布了新的文献求助30
3秒前
3秒前
大个应助每天都要开心采纳,获得80
4秒前
彭于晏应助神勇的砖头采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
张鑫发布了新的文献求助10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
单复天完成签到,获得积分10
5秒前
bkagyin应助端庄的秋翠采纳,获得10
5秒前
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
6秒前
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
科研通AI5应助浮夸采纳,获得10
6秒前
6秒前
xuhang发布了新的文献求助10
8秒前
8秒前
9秒前
施中明完成签到,获得积分20
10秒前
小二郎应助KukudMing采纳,获得10
10秒前
kmg发布了新的文献求助10
11秒前
爱科研的杰杰桀桀完成签到 ,获得积分10
12秒前
12秒前
14秒前
14秒前
14秒前
搜集达人应助小飞飞采纳,获得10
15秒前
搜集达人应助小飞飞采纳,获得10
15秒前
饕餮完成签到,获得积分10
15秒前
15秒前
duan发布了新的文献求助10
16秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
HVAC 1 toolkit : a toolkit for primary HVAC system energy calculation 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839628
求助须知:如何正确求助?哪些是违规求助? 3382022
关于积分的说明 10520773
捐赠科研通 3101419
什么是DOI,文献DOI怎么找? 1708054
邀请新用户注册赠送积分活动 822103
科研通“疑难数据库(出版商)”最低求助积分说明 773203