减数分裂细胞
减数分裂
生物
倍性
配子
染色体分离
遗传学
突变体
拟南芥
细胞器
花粉
有性生殖
减数分裂II
细胞生物学
拟南芥
染色体
植物
基因
人类受精
作者
Jun Yi,David Kradolfer,Lynette Brownfield,Yingrui Ma,Ewa Piskorz,Claudia Köhler,Hua Jiang
摘要
Polyploidy, the presence of more than two sets of chromosomes within a cell, is a widespread phenomenon in plants. The main route to polyploidy is considered through the production of unreduced gametes that are formed as a consequence of meiotic defects. Nevertheless, for reasons poorly understood, the frequency of unreduced gamete formation differs substantially among different plant species. The previously identified meiotic mutant jason (jas) in Arabidopsis thaliana forms about 60% diploid (2n) pollen. JAS is required to maintain an organelle band as a physical barrier between the two meiotic spindles, preventing previously separated chromosome groups from uniting into a single cell. In this study, we characterized the jas suppressor mutant telamon (tel) that restored the production of haploid pollen in the jas background. The tel mutant did not restore the organelle band, but enlarged the size of male jas tel meiocytes, suggesting that enlarged meiocytes can bypass the requirement of the organelle band. Consistently, enlarged meiocytes generated by a tetraploid jas mutant formed reduced gametes. The results reveal that meiocyte size impacts chromosome segregation in meiosis II, suggesting an alternative way to maintain the ploidy stability in meiosis during evolution.
科研通智能强力驱动
Strongly Powered by AbleSci AI