MTSCD-Net: A network based on multi-task learning for semantic change detection of bitemporal remote sensing images

变更检测 计算机科学 任务(项目管理) 分割 编码器 人工智能 二元分类 模式识别(心理学) 工程类 系统工程 支持向量机 操作系统
作者
Fengzhi Cui,Jie Jiang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:118: 103294-103294 被引量:29
标识
DOI:10.1016/j.jag.2023.103294
摘要

In recent years, change detection has been one of the hot research topics within the field of remote sensing. Previous studies have concentrated on binary change detection (BCD), but it doesn't meet the current needs. Therefore, semantic change detection (SCD) is also gradually developing, which focuses on determining the specific changed type while obtaining changed areas. In the paper, we propose a multi-task learning method (MTSCD-Net) for SCD task. The SCD task is decoupled into two related subtasks, semantic segmentation (SS) and BCD, then unifies them under the same framework. Multi-scale features are extracted using the Siamese semantic-aware encoder based on Swin Transformer, and the aggregation module is designed to combine features. Then, the change information extraction module is designed to enhance the capacity to express features by fully integrating the two-level difference features that are generated from fused features. Moreover, in the decoder stage, the spatial attention weight map is obtained using the features of the BCD subtask, which provides location prior information for the features of the SS subtask. It helps fully explore the correlation between the two subtasks. The two loss functions of subtasks are weighted to train MTSCD-Net. The comparative experiments results on two typical SCD datasets confirm the advantage of MTSCD-Net for SCD task. For the SeK index, MTSCD-Net achieves 3.96% and 20.57% on HRSCD and SECOND datasets, respectively. This outperforms other comparative methods such as Bi-SRNet (which achieves 4.86% and 1.47% higher on two datasets, respectively). The same is true for the Score metric. Moreover, the ablation experiment results confirm the effectiveness of key modules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li完成签到,获得积分10
刚刚
风中汽车发布了新的文献求助10
1秒前
Lili完成签到,获得积分10
2秒前
王王王发布了新的文献求助10
2秒前
2秒前
ANmin发布了新的文献求助10
2秒前
yuan完成签到,获得积分20
3秒前
领导范儿应助雪白的稀采纳,获得10
4秒前
乐观伟泽发布了新的文献求助10
5秒前
5秒前
6秒前
养猪人发布了新的文献求助10
7秒前
LisA__驳回了wanci应助
8秒前
Jasper应助Richardisme采纳,获得10
9秒前
智慧女孩完成签到,获得积分10
9秒前
星辰大海应助sillyforce采纳,获得10
10秒前
11秒前
11秒前
木子发布了新的文献求助10
16秒前
风中汽车完成签到,获得积分10
17秒前
嘟嘟嘟完成签到,获得积分10
18秒前
19秒前
st89225完成签到,获得积分0
19秒前
20秒前
小马甲应助clausius采纳,获得10
22秒前
23秒前
小曾发布了新的文献求助10
24秒前
Ship完成签到,获得积分10
24秒前
yi发布了新的文献求助10
25秒前
Hello应助木子采纳,获得10
25秒前
个性的翠芙完成签到 ,获得积分10
25秒前
搜集达人应助意大利种马采纳,获得10
26秒前
温瞳完成签到,获得积分10
27秒前
sillyforce发布了新的文献求助10
27秒前
27秒前
小马甲应助王王王采纳,获得10
28秒前
666发布了新的文献求助10
28秒前
31秒前
Alex应助www采纳,获得20
31秒前
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4026421
求助须知:如何正确求助?哪些是违规求助? 3566068
关于积分的说明 11351086
捐赠科研通 3297233
什么是DOI,文献DOI怎么找? 1816005
邀请新用户注册赠送积分活动 890346
科研通“疑难数据库(出版商)”最低求助积分说明 813538