MTSCD-Net: A network based on multi-task learning for semantic change detection of bitemporal remote sensing images

变更检测 计算机科学 任务(项目管理) 分割 编码器 人工智能 二元分类 模式识别(心理学) 工程类 支持向量机 操作系统 系统工程
作者
Fengzhi Cui,Jie Jiang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:118: 103294-103294 被引量:33
标识
DOI:10.1016/j.jag.2023.103294
摘要

In recent years, change detection has been one of the hot research topics within the field of remote sensing. Previous studies have concentrated on binary change detection (BCD), but it doesn't meet the current needs. Therefore, semantic change detection (SCD) is also gradually developing, which focuses on determining the specific changed type while obtaining changed areas. In the paper, we propose a multi-task learning method (MTSCD-Net) for SCD task. The SCD task is decoupled into two related subtasks, semantic segmentation (SS) and BCD, then unifies them under the same framework. Multi-scale features are extracted using the Siamese semantic-aware encoder based on Swin Transformer, and the aggregation module is designed to combine features. Then, the change information extraction module is designed to enhance the capacity to express features by fully integrating the two-level difference features that are generated from fused features. Moreover, in the decoder stage, the spatial attention weight map is obtained using the features of the BCD subtask, which provides location prior information for the features of the SS subtask. It helps fully explore the correlation between the two subtasks. The two loss functions of subtasks are weighted to train MTSCD-Net. The comparative experiments results on two typical SCD datasets confirm the advantage of MTSCD-Net for SCD task. For the SeK index, MTSCD-Net achieves 3.96% and 20.57% on HRSCD and SECOND datasets, respectively. This outperforms other comparative methods such as Bi-SRNet (which achieves 4.86% and 1.47% higher on two datasets, respectively). The same is true for the Score metric. Moreover, the ablation experiment results confirm the effectiveness of key modules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lyue发布了新的文献求助10
刚刚
缱绻完成签到 ,获得积分10
3秒前
CipherSage应助Star-XYX采纳,获得10
4秒前
4秒前
Owen应助安详岱周采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
7秒前
qiu完成签到,获得积分10
7秒前
刑不上院士,礼不下博士完成签到,获得积分10
8秒前
8秒前
10秒前
传奇3应助雨筠采纳,获得10
11秒前
Mecury完成签到,获得积分10
11秒前
科研mrxu完成签到,获得积分20
13秒前
NNi完成签到,获得积分20
13秒前
桐桐应助真实的采白采纳,获得10
14秒前
葱饼完成签到 ,获得积分10
14秒前
鹿若风完成签到,获得积分10
14秒前
潇洒的之瑶完成签到,获得积分20
15秒前
16秒前
Akim应助奈斯采纳,获得10
16秒前
16秒前
Atalent完成签到,获得积分10
17秒前
18秒前
18秒前
20秒前
彭于晏应助神勇代荷采纳,获得10
21秒前
温暖宛筠发布了新的文献求助10
21秒前
愉快的秋凌完成签到,获得积分10
21秒前
郑振哲完成签到,获得积分10
22秒前
小团团发布了新的文献求助10
22秒前
小蘑菇应助普外科老白采纳,获得10
22秒前
爱笑子默完成签到,获得积分10
22秒前
22秒前
梨凉发布了新的文献求助10
22秒前
23秒前
听谛9发布了新的文献求助10
23秒前
23秒前
guowu发布了新的文献求助10
24秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5792019
求助须知:如何正确求助?哪些是违规求助? 5739286
关于积分的说明 15481788
捐赠科研通 4919351
什么是DOI,文献DOI怎么找? 2648173
邀请新用户注册赠送积分活动 1595563
关于科研通互助平台的介绍 1550353