Insight into the effect of nitrate on AGS granulation: Granular characteristics, microbial community and metabolomics response

硝酸盐 造粒 化学 代谢组学 微生物种群生物学 环境化学 细菌 生物 色谱法 工程类 岩土工程 遗传学 有机化学
作者
Danqing Wu,Bin Zhao,Peng Zhang,Qiang An
出处
期刊:Water Research [Elsevier BV]
卷期号:236: 119949-119949 被引量:26
标识
DOI:10.1016/j.watres.2023.119949
摘要

As a promising wastewater treatment technology, aerobic granular sludge (AGS) process is still hindered by slow granule formation and easy disintegration in the application. While nitrate, one of the target pollutants in wastewater, showed a potential effect on AGS granulation process. Herein, this study attempted to reveal the role of nitrate in AGS granulation. By adding exogenous nitrate (10 mg L-1), the AGS formation was markedly improved and accomplished at 63 d, while the control group achieved AGS formation at 87 d. However, a disintegration was observed under a long-term nitrate feeding. A positive correlation was observed among granule size, extracellular polymeric substances (EPS) and intracellular c-di-GMP level in both formation and disintegration phases. The subsequent static biofilm assays indicated that nitrate might upregulate c-di-GMP via denitrification-derived NO, and c-di-GMP further upregulated EPS, thereby promoting AGS formation. However, excessive NO probably caused disintegration by downregulating c-di-GMP and EPS. Microbial community showed that nitrate favored the enrichment of denitrifiers and EPS producing microbes, which were responsible for the regulation of NO, c-di-GMP and EPS. Metabolomics analysis showed that amino acid metabolism was the most affected metabolism by nitrate. Some amino acids, such as Arg, His and Asp, were upregulated in the granule formation phase and downregulated in the disintegration phase, indicating the potential contribution to EPS biosynthesis. This study provides metabolic insight into how nitrate promotes/inhibits granulation, which may contribute to unwrapping the mystery of granulation and overcoming the limitations of AGS application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
道听途说完成签到 ,获得积分10
1秒前
顾矜应助噢噢噢噢采纳,获得10
2秒前
你好CDY完成签到,获得积分10
3秒前
4秒前
搜集达人应助石榴汁的书采纳,获得10
4秒前
4秒前
5秒前
6秒前
汉堡包应助medlive2020采纳,获得10
6秒前
7秒前
斯文败类应助23xyke采纳,获得10
7秒前
猪猪hero应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
科研通AI6应助闭眼听风雨采纳,获得10
8秒前
Lucas应助十三采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
积极废物发布了新的文献求助20
9秒前
科研通AI6应助catboy采纳,获得10
9秒前
张浩洋发布了新的文献求助10
11秒前
温水完成签到,获得积分10
13秒前
13秒前
Nniu完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
mouxq发布了新的文献求助10
13秒前
Ivy完成签到,获得积分10
14秒前
16秒前
16秒前
科研通AI6应助小米粒采纳,获得10
16秒前
三三得九完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4699399
求助须知:如何正确求助?哪些是违规求助? 4068178
关于积分的说明 12577605
捐赠科研通 3767840
什么是DOI,文献DOI怎么找? 2080931
邀请新用户注册赠送积分活动 1108811
科研通“疑难数据库(出版商)”最低求助积分说明 987057