RFMiD: Retinal Image Analysis for multi-Disease Detection challenge

人工智能 计算机科学 糖尿病性视网膜病变 图像(数学) 疾病 黄斑变性 青光眼 视网膜中央动脉阻塞 预处理器 模式识别(心理学) 眼底(子宫) 视网膜 上下文图像分类 验光服务 病理 医学 眼科 糖尿病 内分泌学
作者
Samiksha Pachade,Prasanna Porwal,Manesh Kokare,Girish Deshmukh,Vivek Sahasrabuddhe,Zhengbo Luo,Feng Han,Zitang Sun,Qihan Li,Sei‐ichiro Kamata,Edward Ho,Edward Wang,Asaanth Sivajohan,Saerom Youn,Kevin Lane,Jin Chun,Xinliang Wang,Yunchao Gu,Sixu Lu,Young-Tack Oh
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:99: 103365-103365 被引量:2
标识
DOI:10.1016/j.media.2024.103365
摘要

In the last decades, many publicly available large fundus image datasets have been collected for diabetic retinopathy, glaucoma, and age-related macular degeneration, and a few other frequent pathologies. These publicly available datasets were used to develop a computer-aided disease diagnosis system by training deep learning models to detect these frequent pathologies. One challenge limiting the adoption of a such system by the ophthalmologist is, computer-aided disease diagnosis system ignores sight-threatening rare pathologies such as central retinal artery occlusion or anterior ischemic optic neuropathy and others that ophthalmologists currently detect. Aiming to advance the state-of-the-art in automatic ocular disease classification of frequent diseases along with the rare pathologies, a grand challenge on "Retinal Image Analysis for multi-Disease Detection" was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI - 2021). This paper, reports the challenge organization, dataset, top-performing participants solutions, evaluation measures, and results based on a new "Retinal Fundus Multi-disease Image Dataset" (RFMiD). There were two principal sub-challenges: disease screening (i.e. presence versus absence of pathology - a binary classification problem) and disease/pathology classification (a 28-class multi-label classification problem). It received a positive response from the scientific community with 74 submissions by individuals/teams that effectively entered in this challenge. The top-performing methodologies utilized a blend of data-preprocessing, data augmentation, pre-trained model, and model ensembling. This multi-disease (frequent and rare pathologies) detection will enable the development of generalizable models for screening the retina, unlike the previous efforts that focused on the detection of specific diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助赵鹏采纳,获得10
刚刚
123完成签到,获得积分20
刚刚
刚刚
斯文远望完成签到,获得积分10
2秒前
奋斗魂幽发布了新的文献求助10
2秒前
科目三应助Kelly采纳,获得10
5秒前
烟花应助lize5493采纳,获得10
5秒前
xiaoyu应助豆子豆子采纳,获得10
6秒前
栗子发布了新的文献求助20
6秒前
8R60d8应助弯弓丝的小张采纳,获得20
7秒前
彭于彦祖应助wdh采纳,获得30
7秒前
心灵美书芹完成签到,获得积分10
8秒前
hanleiharry1发布了新的文献求助10
8秒前
善学以致用应助跳跃曼文采纳,获得10
10秒前
10秒前
axiao完成签到,获得积分10
11秒前
12秒前
DE2022发布了新的文献求助10
14秒前
WYYW完成签到,获得积分10
15秒前
16秒前
17秒前
zjnb关注了科研通微信公众号
17秒前
19秒前
19秒前
zzzzzzzz周完成签到,获得积分10
21秒前
跳跃曼文发布了新的文献求助10
21秒前
甜田发布了新的文献求助10
22秒前
脑洞疼应助布曲采纳,获得10
23秒前
斯文的慕蕊完成签到 ,获得积分10
24秒前
25秒前
笑笑笑先生完成签到,获得积分10
26秒前
26秒前
27秒前
28秒前
29秒前
29秒前
29秒前
小宝发布了新的文献求助10
30秒前
舒伯特完成签到 ,获得积分10
31秒前
u2u2发布了新的文献求助10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3930447
求助须知:如何正确求助?哪些是违规求助? 3475307
关于积分的说明 10986462
捐赠科研通 3205428
什么是DOI,文献DOI怎么找? 1771464
邀请新用户注册赠送积分活动 859026
科研通“疑难数据库(出版商)”最低求助积分说明 796906