Deep Learning in Gene Regulatory Network Inference: A Survey

推论 基因调控网络 深度学习 杠杆(统计) 数据科学 机器学习 可扩展性 基因 分类 多元化(营销策略) 人工智能 领域(数学) 计算机科学 生物 基因表达 业务 数学 纯数学 营销 数据库 生物化学
作者
Jiayi Dong,Jiahao Li,Fei Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (6): 2089-2101 被引量:4
标识
DOI:10.1109/tcbb.2024.3442536
摘要

Understanding the intricate regulatory relationships among genes is crucial for comprehending the development, differentiation, and cellular response in living systems. Consequently, inferring gene regulatory networks (GRNs) based on observed data has gained significant attention as a fundamental goal in biological applications. The proliferation and diversification of available data present both opportunities and challenges in accurately inferring GRNs. Deep learning, a highly successful technique in various domains, holds promise in aiding GRN inference. Several GRN inference methods employing deep learning models have been proposed; however, the selection of an appropriate method remains a challenge for life scientists. In this survey, we provide a comprehensive analysis of 12 GRN inference methods that leverage deep learning models. We trace the evolution of these major methods and categorize them based on the types of applicable data. We delve into the core concepts and specific steps of each method, offering a detailed evaluation of their effectiveness and scalability across different scenarios. These insights enable us to make informed recommendations. Moreover, we explore the challenges faced by GRN inference methods utilizing deep learning and discuss future directions, providing valuable suggestions for the advancement of data scientists in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
未成年面包完成签到,获得积分10
1秒前
yyyq发布了新的文献求助10
1秒前
JD发布了新的文献求助10
1秒前
6789完成签到,获得积分10
2秒前
gengxw完成签到,获得积分10
2秒前
2秒前
zh完成签到 ,获得积分10
2秒前
曾雅麟完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
谦让碧菡发布了新的文献求助30
5秒前
5秒前
早起发布了新的文献求助10
5秒前
逸仙人发布了新的文献求助10
5秒前
fin发布了新的文献求助50
5秒前
6秒前
鹭鹭沅沅完成签到,获得积分20
6秒前
bkagyin应助klz采纳,获得10
6秒前
生动的秋荷完成签到,获得积分10
6秒前
7秒前
ycg完成签到,获得积分10
7秒前
8秒前
hokin33完成签到,获得积分10
8秒前
阿洁发布了新的文献求助10
8秒前
Juxinf完成签到 ,获得积分10
8秒前
8秒前
zbyan发布了新的文献求助10
9秒前
史昊昊发布了新的文献求助10
10秒前
李爱国应助henryacmilan采纳,获得20
10秒前
10秒前
专注的语堂完成签到,获得积分10
10秒前
10秒前
11秒前
curtainai完成签到,获得积分10
11秒前
11秒前
风汐5423发布了新的文献求助10
12秒前
12秒前
我是一只小木虫完成签到,获得积分20
12秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4062413
求助须知:如何正确求助?哪些是违规求助? 3601080
关于积分的说明 11436528
捐赠科研通 3324278
什么是DOI,文献DOI怎么找? 1827643
邀请新用户注册赠送积分活动 898152
科研通“疑难数据库(出版商)”最低求助积分说明 818938