DSANet: Dynamic and Structure-Aware GCN for Sparse and Incomplete Point Cloud Learning

计算机科学 点云 云计算 点(几何) 人工智能 数学 几何学 操作系统
作者
Yushi Li,George Baciu,Rong Chen,Chenhui Li,Hao Wang,Yushan Pan,Weiping Ding
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3439706
摘要

Learning 3-D structures from incomplete point clouds with extreme sparsity and random distributions is a challenge since it is difficult to infer topological connectivity and structural details from fragmentary representations. Missing large portions of informative structures further aggravates this problem. To overcome this, a novel graph convolutional network (GCN) called dynamic and structure-aware NETwork (DSANet) is presented in this article. This framework is formulated based on a pyramidic auto-encoder (AE) architecture to address accurate structure reconstruction on the sparse and incomplete point clouds. A PointNet-like neural network is applied as the encoder to efficiently aggregate the global representations of coarse point clouds. On the decoder side, we design a dynamic graph learning module with a structure-aware attention (SAA) to take advantage of the topology relationships maintained in the dynamic latent graph. Relying on gradually unfolding the extracted representation into a sequence of graphs, DSANet is able to reconstruct complicated point clouds with rich and descriptive details. To associate analogous structure awareness with semantic estimation, we further propose a mechanism, called structure similarity assessment (SSA). This method allows our model to surmise semantic homogeneity in an unsupervised manner. Finally, we optimize the proposed model by minimizing a new distortion-aware objective end-to-end. Extensive qualitative and quantitative experiments demonstrate the impressive performance of our model in reconstructing unbroken 3-D shapes from deficient point clouds and preserving semantic relationships among different regional structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dawnshea应助ybwei2008_163采纳,获得10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
所所应助Ting采纳,获得10
3秒前
kelven完成签到,获得积分10
3秒前
这位同学不知道叫什么好完成签到,获得积分10
3秒前
Thien发布了新的文献求助10
4秒前
邱静发布了新的文献求助10
4秒前
小周发布了新的文献求助10
4秒前
韩文彬发布了新的文献求助10
5秒前
情怀应助结实三娘采纳,获得10
6秒前
不想干活应助潇洒莞采纳,获得10
6秒前
个性的紫菜应助111采纳,获得10
7秒前
8秒前
uppercrusteve完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
大猪头发布了新的文献求助10
13秒前
英姑应助十柒采纳,获得10
14秒前
YJY完成签到 ,获得积分10
16秒前
16秒前
奋斗千秋发布了新的文献求助10
16秒前
leaolf应助蝉鸣一夏采纳,获得10
17秒前
胖墩儿驾到完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
22秒前
现代的擎苍完成签到,获得积分10
23秒前
25秒前
25秒前
WLWLW举报STP顶峰相见求助涉嫌违规
25秒前
哈哈哈哈哈哈完成签到,获得积分10
27秒前
27秒前
欧怡然发布了新的文献求助10
27秒前
modjo发布了新的文献求助10
29秒前
你是我的障完成签到,获得积分10
30秒前
31秒前
31秒前
31秒前
某某发布了新的文献求助10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4636532
求助须知:如何正确求助?哪些是违规求助? 4030929
关于积分的说明 12471650
捐赠科研通 3717584
什么是DOI,文献DOI怎么找? 2051874
邀请新用户注册赠送积分活动 1082978
科研通“疑难数据库(出版商)”最低求助积分说明 965117