Plasma Metabolomics Identifies Key Metabolites and Improves Prediction of Diabetic Retinopathy

医学 代谢组学 糖尿病性视网膜病变 钥匙(锁) 内科学 视网膜病变 代谢物 糖尿病 计算生物学 生物信息学 内分泌学 计算机科学 计算机安全 生物
作者
Shaopeng Yang,Riqian Liu,Zhuoyao Xin,Ziyu Zhu,Jiaqing Chu,Pingting Zhong,Zhuoting Zhu,Xianwen Shang,Wenyong Huang,Lei Zhang,Mingguang He,Wei Wang
出处
期刊:Ophthalmology [Elsevier BV]
卷期号:131 (12): 1436-1446 被引量:4
标识
DOI:10.1016/j.ophtha.2024.07.004
摘要

Purpose To identify longitudinal metabolomic fingerprints of diabetic retinopathy (DR) and evaluate their utility in predicting DR development and progression. Design Multicenter, multi-ethnic cohort study. Participants This study included 17,675 participants with baseline pre-diabetes/diabetes, in accordance with the 2021 American Diabetes Association guideline, and free of baseline DR from the UK Biobank (UKB); and an additional 638 diabetic participants from the Guangzhou Diabetic Eye Study (GDES) for external validation. Methods Longitudinal DR metabolomic fingerprints were identified through nuclear magnetic resonance assay in UKB participants. The predictive value of these fingerprints for predicting DR development were assessed in a fully withheld test set. External validation and extrapolation analyses of DR progression and microvascular damage were conducted in the GDES cohort. Model assessments included the C-statistic, net classification improvement (NRI), integrated discrimination improvement (IDI), calibration, and clinical utility in both cohorts. Main Outcome Measures DR development, progression, and retinal microvascular damage. Results Of 168 metabolites, 118 were identified as candidate metabolomic fingerprints for future DR development. These fingerprints significantly improved the predictability for DR development beyond traditional indicators (C-statistic: 0.802, 95% CI, 0.760–0.843 vs. 0.751, 95% CI, 0.706–0.796; P = 5.56×10−4). Glucose, lactate, and citrate were among the fingerprints validated in the GDES cohort. Using these parsimonious and replicable fingerprints yielded similar improvements for predicting DR development (C-statistic: 0.807, 95% CI, 0.711–0.903 vs. 0.617, 95% CI, 0.494, 0.740; P = 1.68×10−4) and progression (C-statistic: 0.797, 95% CI, 0.712–0.882 vs. 0.665, 95% CI, 0.545–0.784; P = 0.003) in the external cohort. Improvements in NRIs, IDIs, and clinical utility were also evident in both cohorts (all P <0.05). In addition, lactate and citrate were associated to microvascular damage across macular and optic disc regions (all P <0.05). Conclusions Metabolomic profiling has proven effective in identifying robust fingerprints for predicting future DR development and progression, providing novel insights into the early and advanced stages of DR pathophysiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾城应助顾城采纳,获得20
1秒前
苏胜男完成签到 ,获得积分10
1秒前
eka123发布了新的文献求助10
2秒前
研友_84WJXZ完成签到,获得积分20
2秒前
幽默三娘发布了新的文献求助10
2秒前
3秒前
SciGPT应助自觉的夏之采纳,获得10
3秒前
万能图书馆应助潇洒映冬采纳,获得10
3秒前
3秒前
zh发布了新的文献求助10
4秒前
乐正成危完成签到 ,获得积分10
5秒前
PURE发布了新的文献求助10
7秒前
852应助Xianhao采纳,获得10
7秒前
科研小白LR完成签到,获得积分10
7秒前
Iris发布了新的文献求助10
8秒前
善学以致用应助山菡采纳,获得10
8秒前
Hello应助笑点低菲鹰采纳,获得10
9秒前
9秒前
科研通AI5应助沈尔云采纳,获得10
10秒前
Joan_89完成签到,获得积分10
10秒前
imzmy完成签到,获得积分10
10秒前
D1fficulty完成签到,获得积分0
10秒前
mingzai完成签到 ,获得积分10
10秒前
科研通AI5应助甜甜的以筠采纳,获得10
11秒前
ssunqi应助甜甜的以筠采纳,获得10
11秒前
EuniceMGuo应助甜甜的以筠采纳,获得10
11秒前
子车茗应助甜甜的以筠采纳,获得10
11秒前
科研通AI5应助甜甜的以筠采纳,获得10
11秒前
8R60d8应助甜甜的以筠采纳,获得10
11秒前
8R60d8应助甜甜的以筠采纳,获得10
11秒前
jingyi应助甜甜的以筠采纳,获得10
11秒前
12秒前
zh完成签到,获得积分10
12秒前
13秒前
余子文发布了新的文献求助10
13秒前
13秒前
14秒前
顾城完成签到,获得积分20
14秒前
14秒前
wanci应助金皓玄采纳,获得10
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4187172
求助须知:如何正确求助?哪些是违规求助? 3723097
关于积分的说明 11731055
捐赠科研通 3400802
什么是DOI,文献DOI怎么找? 1866133
邀请新用户注册赠送积分活动 922955
科研通“疑难数据库(出版商)”最低求助积分说明 834354