Plasma Metabolomics Identifies Key Metabolites and Improves Prediction of Diabetic Retinopathy

医学 代谢组学 糖尿病性视网膜病变 钥匙(锁) 内科学 视网膜病变 代谢物 糖尿病 计算生物学 生物信息学 内分泌学 计算机科学 计算机安全 生物
作者
Shaopeng Yang,Riqian Liu,Zhuoyao Xin,Ziyu Zhu,Jiaqing Chu,Pingting Zhong,Zhuoting Zhu,Xianwen Shang,Wenyong Huang,Lei Zhang,Mingguang He,Wei Wang
出处
期刊:Ophthalmology [Elsevier BV]
卷期号:131 (12): 1436-1446 被引量:9
标识
DOI:10.1016/j.ophtha.2024.07.004
摘要

Purpose To identify longitudinal metabolomic fingerprints of diabetic retinopathy (DR) and evaluate their utility in predicting DR development and progression. Design Multicenter, multi-ethnic cohort study. Participants This study included 17,675 participants with baseline pre-diabetes/diabetes, in accordance with the 2021 American Diabetes Association guideline, and free of baseline DR from the UK Biobank (UKB); and an additional 638 diabetic participants from the Guangzhou Diabetic Eye Study (GDES) for external validation. Methods Longitudinal DR metabolomic fingerprints were identified through nuclear magnetic resonance assay in UKB participants. The predictive value of these fingerprints for predicting DR development were assessed in a fully withheld test set. External validation and extrapolation analyses of DR progression and microvascular damage were conducted in the GDES cohort. Model assessments included the C-statistic, net classification improvement (NRI), integrated discrimination improvement (IDI), calibration, and clinical utility in both cohorts. Main Outcome Measures DR development, progression, and retinal microvascular damage. Results Of 168 metabolites, 118 were identified as candidate metabolomic fingerprints for future DR development. These fingerprints significantly improved the predictability for DR development beyond traditional indicators (C-statistic: 0.802, 95% CI, 0.760–0.843 vs. 0.751, 95% CI, 0.706–0.796; P = 5.56×10−4). Glucose, lactate, and citrate were among the fingerprints validated in the GDES cohort. Using these parsimonious and replicable fingerprints yielded similar improvements for predicting DR development (C-statistic: 0.807, 95% CI, 0.711–0.903 vs. 0.617, 95% CI, 0.494, 0.740; P = 1.68×10−4) and progression (C-statistic: 0.797, 95% CI, 0.712–0.882 vs. 0.665, 95% CI, 0.545–0.784; P = 0.003) in the external cohort. Improvements in NRIs, IDIs, and clinical utility were also evident in both cohorts (all P <0.05). In addition, lactate and citrate were associated to microvascular damage across macular and optic disc regions (all P <0.05). Conclusions Metabolomic profiling has proven effective in identifying robust fingerprints for predicting future DR development and progression, providing novel insights into the early and advanced stages of DR pathophysiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
文艺访卉发布了新的文献求助10
1秒前
裴秀智完成签到,获得积分10
2秒前
2秒前
3秒前
风中冰香应助科研废物采纳,获得10
3秒前
FKVB_完成签到,获得积分10
3秒前
ikutovaya完成签到,获得积分10
3秒前
尘林发布了新的文献求助10
4秒前
Abdurrahman完成签到,获得积分10
4秒前
令狐晓博完成签到,获得积分0
4秒前
希希发布了新的文献求助10
4秒前
我是老大应助shuishui采纳,获得10
4秒前
4秒前
dys完成签到,获得积分10
5秒前
5秒前
liu完成签到,获得积分10
5秒前
婧宸完成签到 ,获得积分10
5秒前
充电宝应助嘿嘿嘿采纳,获得10
6秒前
7秒前
归尘发布了新的文献求助10
7秒前
英姑应助小雨唱片采纳,获得10
7秒前
公孙朝雨完成签到 ,获得积分10
7秒前
忧郁的手链完成签到,获得积分10
8秒前
情怀应助李lj采纳,获得10
9秒前
星辰大海应助Nireus采纳,获得10
9秒前
在水一方应助一塔湖图采纳,获得10
10秒前
科目三应助不想科研采纳,获得10
10秒前
抽刀断水发布了新的文献求助10
10秒前
真实的跳跳糖完成签到,获得积分10
10秒前
D德发布了新的文献求助10
11秒前
11秒前
蒯秀燕完成签到,获得积分10
11秒前
dys发布了新的文献求助10
11秒前
ChenYX发布了新的文献求助20
11秒前
nana发布了新的文献求助10
12秒前
solar完成签到,获得积分10
13秒前
xqf123完成签到,获得积分10
13秒前
14秒前
豆子应助无心采纳,获得80
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194106
求助须知:如何正确求助?哪些是违规求助? 4376448
关于积分的说明 13629417
捐赠科研通 4231351
什么是DOI,文献DOI怎么找? 2320965
邀请新用户注册赠送积分活动 1319192
关于科研通互助平台的介绍 1269564