Swin-PSAxialNet: An Efficient Multi-Organ Segmentation Technique

分割 计算机科学 计算生物学 生物 人工智能 解剖
作者
Lei Ma,Dian Zhang,Zhaoxin Wang,Jin‐Ping Han,Xing Wang,Xin Zhou,Wenwen Yang,Peihua Lu
出处
期刊:Journal of Visualized Experiments [MyJOVE]
卷期号: (209)
标识
DOI:10.3791/66459
摘要

Abdominal multi-organ segmentation is one of the most important topics in the field of medical image analysis, and it plays an important role in supporting clinical workflows such as disease diagnosis and treatment planning. In this study, an efficient multi-organ segmentation method called Swin-PSAxialNet based on the nnU-Net architecture is proposed. It was designed specifically for the precise segmentation of 11 abdominal organs in CT images. The proposed network has made the following improvements compared to nnU-Net. Firstly, Space-to-depth (SPD) modules and parameter-shared axial attention (PSAA) feature extraction blocks were introduced, enhancing the capability of 3D image feature extraction. Secondly, a multi-scale image fusion approach was employed to capture detailed information and spatial features, improving the capability of extracting subtle features and edge features. Lastly, a parameter-sharing method was introduced to reduce the model's computational cost and training speed. The proposed network achieves an average Dice coefficient of 0.93342 for the segmentation task involving 11 organs. Experimental results indicate the notable superiority of Swin-PSAxialNet over previous mainstream segmentation methods. The method shows excellent accuracy and low computational costs in segmenting major abdominal organs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐的问凝完成签到,获得积分20
1秒前
doctor_loong发布了新的文献求助10
2秒前
明亮紫易完成签到,获得积分10
2秒前
Ya完成签到,获得积分10
2秒前
CipherSage应助xiaoqin采纳,获得10
2秒前
binshier完成签到,获得积分10
2秒前
77发布了新的文献求助10
2秒前
3秒前
4秒前
kiwi完成签到,获得积分10
4秒前
111发布了新的文献求助10
5秒前
一二完成签到 ,获得积分10
5秒前
Ava应助hahaha采纳,获得10
5秒前
害羞的安萱完成签到,获得积分20
6秒前
田様应助傲娇的刺猬采纳,获得10
6秒前
7秒前
whisper完成签到,获得积分10
7秒前
dgfhg发布了新的文献求助10
7秒前
7秒前
大萝贝完成签到,获得积分10
7秒前
机灵的安青完成签到,获得积分20
7秒前
kk完成签到,获得积分10
7秒前
7秒前
CodeCraft应助Hshi采纳,获得10
8秒前
多情的灵安完成签到,获得积分10
8秒前
望望旺仔牛奶完成签到,获得积分10
8秒前
8秒前
个性的无敌给个性的无敌的求助进行了留言
9秒前
Samuel发布了新的文献求助10
9秒前
9秒前
kiwi发布了新的文献求助10
10秒前
10秒前
10秒前
智海瑞完成签到,获得积分10
11秒前
牛牛牛应助旷野采纳,获得10
11秒前
LWJ发布了新的文献求助10
12秒前
布丁味小核桃完成签到,获得积分10
12秒前
清爽的碧空完成签到,获得积分10
12秒前
QQQQ完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792815
求助须知:如何正确求助?哪些是违规求助? 3337271
关于积分的说明 10284330
捐赠科研通 3054023
什么是DOI,文献DOI怎么找? 1675755
邀请新用户注册赠送积分活动 803778
科研通“疑难数据库(出版商)”最低求助积分说明 761534