Machine Learning Boosted Entropy-Engineered Synthesis of stable Nanometric Solid Solution CuCo Alloys for Efficient Nitrate Reduction to Ammonia

硝酸盐 还原(数学) 熵(时间箭头) 材料科学 热力学 数学 化学 物理 有机化学 几何学
作者
Yao Hu,Haihui Lan,Bo Hu,Jiaxuan Gong,Donghui Wang,Wenda Zhang,Yan Mo,Huicong Xia,Mingde Yao,Mingliang Du
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.00142
摘要

Nanometric solid solution alloys are utilized in a broad range of fields, including catalysis, energy storage, medical application, and sensor technology. Unfortunately, the synthesis of these alloys becomes increasingly challenging as the disparity between the metal elements grows, due to differences in atomic sizes, melting points, and chemical affinities. This study utilized a data-driven approach incorporating sample balancing enhancement techniques and multilayer perceptron (MLP) algorithms to improve the model's ability to handle imbalanced data, significantly boosting the efficiency of experimental parameter optimization. Building on this enhanced data processing framework, we developed an entropy-engineered synthesis approach specifically designed to produce stable, nanometric copper and cobalt (CuCo) solid solution alloys. Under conditions of -0.425 V (vs. RHE), the CuCo alloy exhibited nearly 100% Faraday efficiency (FE) and a high ammonia production rate of 232.17 mg h-1 mg-1. Stability tests in a simulated industrial environment showed that the catalyst maintained over 80% FE and an ammonia production rate exceeding 170 mg h-1 mg-1 over a testing period of 120 hours, outperforming most reported catalysts. To delve deeper into the synergistic interaction mechanisms between Cu and Co, in situ Raman spectroscopy was utilized for realtime monitoring, and density functional theory (DFT) calculations further substantiated our findings. These results not only highlight the exceptional catalytic performance of the CuCo alloy but also reflect the effective electronic and energy interactions between the two metals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助hwezhu采纳,获得10
刚刚
科研通AI2S应助吴图图采纳,获得10
2秒前
2秒前
5秒前
oreo发布了新的文献求助10
8秒前
8秒前
9秒前
hwezhu发布了新的文献求助10
11秒前
而已完成签到,获得积分10
12秒前
科研通AI2S应助美满的安蕾采纳,获得10
16秒前
科研通AI2S应助阿娟儿采纳,获得30
19秒前
淡定的天空完成签到,获得积分10
19秒前
阿九完成签到,获得积分10
25秒前
29秒前
善良的剑通应助丸橙采纳,获得10
30秒前
32秒前
34秒前
34秒前
SCIfafafafa发布了新的文献求助10
36秒前
37秒前
39秒前
Chris完成签到,获得积分10
43秒前
古月发布了新的文献求助10
44秒前
47秒前
炫哥IRIS完成签到,获得积分10
48秒前
49秒前
50秒前
刘小源完成签到 ,获得积分10
51秒前
cmwang发布了新的文献求助10
52秒前
不倦应助高高雪瑶采纳,获得20
56秒前
1分钟前
驿寄梅花发布了新的文献求助10
1分钟前
jurrrrin发布了新的文献求助10
1分钟前
孙玮完成签到,获得积分10
1分钟前
小二郎应助dasfdufos采纳,获得10
1分钟前
科研通AI5应助wangbq采纳,获得20
1分钟前
1分钟前
希望天下0贩的0应助雪落采纳,获得10
1分钟前
danporzhu完成签到,获得积分10
1分钟前
可爱的函函应助驿寄梅花采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780426
求助须知:如何正确求助?哪些是违规求助? 3325838
关于积分的说明 10224370
捐赠科研通 3040880
什么是DOI,文献DOI怎么找? 1669111
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649