TOPSIS based multi-fidelity Co-Kriging for multiple response prediction of structures with uncertainties through real-time hybrid simulation

克里金 托普西斯 不确定度量化 忠诚 采样(信号处理) 理想溶液 计算机科学 算法 数学优化 工程类 数学 机器学习 运筹学 电信 热力学 滤波器(信号处理) 物理 计算机视觉
作者
Cheng Chen,Desheng Ran,Yanlin Yang,Hetao Hou,Changle Peng
出处
期刊:Engineering Structures [Elsevier]
卷期号:280: 115734-115734 被引量:5
标识
DOI:10.1016/j.engstruct.2023.115734
摘要

Energy dissipation devices in vibration control often present challenges for accurate modeling and uncertainty quantification through computational simulation. Simplified numerical models of these devices might not realistically represent their behavior under earthquakes thus lead to errors in response prediction and uncertainty quantification. This study further explores the integration of Co-Kriging meta-modeling and real-time hybrid simulation (RTHS) for global response prediction of multi-degree-of-freedom systems under the presence of structural uncertainties. RTHS in laboratory is taken as high-fidelity (HF) model while computational simulation with approximate modeling is used as low-fidelity (LF) model. Multi-fidelity modeling is integrated through Co-Kriging to render accurate response prediction over the entire sample space of uncertainty. An entropy-based sequential sampling is integrated with the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to sequentially determine new sampling points for HF and LF simulation. The proposed TOPSIS based multi-fidelity Co-Kriging approach is experimentally evaluated through RTHS of a two-degree-of-freedom structure with self-centering viscous dampers. Accuracy of Co-Kriging prediction are further evaluated through validation tests. It is demonstrated that TOPSIS can effectively reduce the number of RTHS tests in laboratory required by multi-fidelity Co-Kriging to achieve better prediction accuracy. The study presents an innovative and effective way to apply RTHS for efficient uncertainty quantification of multiple response quantities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
LXJY完成签到,获得积分10
刚刚
1762120完成签到,获得积分10
1秒前
艳阳天发布了新的文献求助10
1秒前
非了个凡完成签到 ,获得积分10
1秒前
MESSI10完成签到,获得积分10
1秒前
1秒前
匡林威完成签到 ,获得积分10
2秒前
Bi8bo333发布了新的文献求助10
2秒前
王爽完成签到,获得积分10
3秒前
4秒前
牛牛完成签到,获得积分10
4秒前
三点水完成签到,获得积分10
4秒前
魔法披风完成签到,获得积分10
5秒前
理想三寻完成签到,获得积分10
5秒前
浮游应助fan051500采纳,获得10
5秒前
5秒前
大气藏鸟完成签到,获得积分10
6秒前
风中冰香应助SZY采纳,获得10
6秒前
冷艳冷安完成签到 ,获得积分10
6秒前
Journey完成签到,获得积分10
7秒前
孙淳完成签到,获得积分10
7秒前
HYCT完成签到,获得积分10
8秒前
学术小迷发布了新的文献求助10
9秒前
工藤新一完成签到,获得积分10
9秒前
广州队完成签到,获得积分10
10秒前
11秒前
风中冰香应助Bismarck采纳,获得10
11秒前
mao完成签到 ,获得积分10
11秒前
安静代萱完成签到 ,获得积分10
11秒前
qing完成签到,获得积分10
12秒前
夏浅完成签到,获得积分10
14秒前
笨蛋美女完成签到 ,获得积分10
16秒前
17秒前
夜雨声烦完成签到,获得积分10
17秒前
勤恳的书文完成签到 ,获得积分10
18秒前
缓慢沁完成签到,获得积分10
19秒前
浮游应助夜雨声烦采纳,获得10
21秒前
21秒前
andre20完成签到 ,获得积分10
23秒前
学术小迷完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494604
求助须知:如何正确求助?哪些是违规求助? 4592268
关于积分的说明 14436267
捐赠科研通 4525092
什么是DOI,文献DOI怎么找? 2479198
邀请新用户注册赠送积分活动 1464023
关于科研通互助平台的介绍 1437045