TOPSIS based multi-fidelity Co-Kriging for multiple response prediction of structures with uncertainties through real-time hybrid simulation

克里金 托普西斯 不确定度量化 忠诚 采样(信号处理) 理想溶液 计算机科学 算法 数学优化 工程类 数学 机器学习 电信 运筹学 物理 滤波器(信号处理) 计算机视觉 热力学
作者
Cheng Chen,Desheng Ran,Yanlin Yang,Hetao Hou,Changle Peng
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:280: 115734-115734 被引量:5
标识
DOI:10.1016/j.engstruct.2023.115734
摘要

Energy dissipation devices in vibration control often present challenges for accurate modeling and uncertainty quantification through computational simulation. Simplified numerical models of these devices might not realistically represent their behavior under earthquakes thus lead to errors in response prediction and uncertainty quantification. This study further explores the integration of Co-Kriging meta-modeling and real-time hybrid simulation (RTHS) for global response prediction of multi-degree-of-freedom systems under the presence of structural uncertainties. RTHS in laboratory is taken as high-fidelity (HF) model while computational simulation with approximate modeling is used as low-fidelity (LF) model. Multi-fidelity modeling is integrated through Co-Kriging to render accurate response prediction over the entire sample space of uncertainty. An entropy-based sequential sampling is integrated with the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to sequentially determine new sampling points for HF and LF simulation. The proposed TOPSIS based multi-fidelity Co-Kriging approach is experimentally evaluated through RTHS of a two-degree-of-freedom structure with self-centering viscous dampers. Accuracy of Co-Kriging prediction are further evaluated through validation tests. It is demonstrated that TOPSIS can effectively reduce the number of RTHS tests in laboratory required by multi-fidelity Co-Kriging to achieve better prediction accuracy. The study presents an innovative and effective way to apply RTHS for efficient uncertainty quantification of multiple response quantities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助肉肉采纳,获得10
刚刚
123完成签到 ,获得积分10
1秒前
黄丽完成签到,获得积分10
4秒前
多年以后完成签到,获得积分10
6秒前
大忽悠家完成签到,获得积分10
7秒前
orixero应助快快跑咯采纳,获得10
10秒前
11秒前
GL完成签到,获得积分10
12秒前
13秒前
15秒前
啦啦啦发布了新的文献求助10
16秒前
llg完成签到,获得积分10
18秒前
肉肉发布了新的文献求助10
19秒前
心灵美的笑卉完成签到,获得积分10
19秒前
新闻联播发布了新的文献求助10
19秒前
轻轻完成签到,获得积分10
21秒前
儒雅HR完成签到,获得积分10
24秒前
合适台灯完成签到,获得积分10
27秒前
31秒前
hlxhlx完成签到,获得积分10
32秒前
啦啦啦完成签到,获得积分10
32秒前
白_ww发布了新的文献求助30
32秒前
我是老大应助新陈采纳,获得10
33秒前
xxx7749发布了新的文献求助10
34秒前
随性随缘随命完成签到 ,获得积分10
35秒前
快快跑咯发布了新的文献求助10
36秒前
37秒前
37秒前
40秒前
淡然以柳完成签到 ,获得积分10
41秒前
勤奋旭尧发布了新的文献求助10
41秒前
螺旋向上发布了新的文献求助10
43秒前
Andorchid发布了新的文献求助10
43秒前
超级小飞侠完成签到 ,获得积分10
43秒前
43秒前
新陈发布了新的文献求助10
44秒前
44秒前
李健应助科研通管家采纳,获得10
44秒前
Aries完成签到 ,获得积分10
45秒前
轻轻发布了新的文献求助10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781398
求助须知:如何正确求助?哪些是违规求助? 3326904
关于积分的说明 10228819
捐赠科研通 3041892
什么是DOI,文献DOI怎么找? 1669623
邀请新用户注册赠送积分活动 799180
科研通“疑难数据库(出版商)”最低求助积分说明 758751