已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PSCSO: Enhanced sand cat swarm optimization inspired by the political system to solve complex problems

数学优化 水准点(测量) 职位(财务) 元启发式 趋同(经济学) 粒子群优化 帝国主义竞争算法 群体行为 算法 计算机科学 最优化问题 多群优化 数学 经济增长 经济 大地测量学 地理 财务
作者
Farzad Kiani,Fateme Aysin Anka,Fahri ERENEL
出处
期刊:Advances in Engineering Software [Elsevier BV]
卷期号:178: 103423-103423 被引量:27
标识
DOI:10.1016/j.advengsoft.2023.103423
摘要

The Sand Cat Swarm Optimization (SCSO) algorithm is a recently introduced metaheuristic with balanced behavior in the exploration and exploitation phases. However, it is not fast in convergence and may not be successful in finding the global optima, especially for complex problems since it starts the exploitation phase late. Moreover, the performance of SCSO is also affected by incorrect position as it depends on the location of the global optimum. Therefore, this study proposes a new method for the SCSO algorithm with a multidisciplinary principle inspired by the Political (Parliamentary) system, which is named PSCSO. The suggested algorithm increases the chances of finding the global solution by randomly choosing positions between the position of the candidate's best solution available so far and the current position during the exploitation phase. In this regard, a new coefficient is defined that affects the exploration and exploitation phases. In addition, a new mathematical model is introduced to use in the exploitation phase. The performance of the PSCSO algorithm is analyzed on a total of 41 benchmark functions from CEC2015, 2017, and 2019. In addition, its performance is evaluated in four classical engineering problems. The proposed algorithm is compared with the SCSO, Stochastic variation and Elite collaboration in SCSO (SE-SCSO), Hybrid SCSO (HSCSO), Parliamentary Optimization Algorithm (POA), and Arithmetic Optimization Algorithm (AOA) algorithms, which have been proposed in recent years. The obtained results depict that the PSCSO algorithm performs better or equivalently to the compared optimization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LQ完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
好运连连完成签到 ,获得积分10
6秒前
Eva发布了新的文献求助10
8秒前
ChenYX发布了新的文献求助10
9秒前
11秒前
12秒前
12秒前
去银行整点金条完成签到 ,获得积分10
13秒前
新月发布了新的文献求助10
15秒前
零蝉完成签到 ,获得积分10
15秒前
木习习发布了新的文献求助10
19秒前
23秒前
fsznc1完成签到 ,获得积分0
25秒前
麦子完成签到 ,获得积分10
25秒前
蠢宝贝完成签到 ,获得积分10
27秒前
7258完成签到,获得积分10
28秒前
deletelzr完成签到,获得积分10
28秒前
29秒前
32秒前
wssamuel完成签到 ,获得积分10
33秒前
Angus发布了新的文献求助10
33秒前
34秒前
37秒前
夏延发布了新的文献求助10
38秒前
Patrick发布了新的文献求助30
38秒前
木习习完成签到 ,获得积分10
39秒前
华仔应助缓慢的糖豆采纳,获得30
40秒前
40秒前
41秒前
哲别发布了新的文献求助10
43秒前
lingling发布了新的文献求助10
43秒前
于飞应助科研通管家采纳,获得10
45秒前
orixero应助科研通管家采纳,获得10
45秒前
斯文败类应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得20
45秒前
科研通AI6应助科研通管家采纳,获得10
45秒前
浮游应助科研通管家采纳,获得10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290557
求助须知:如何正确求助?哪些是违规求助? 4441884
关于积分的说明 13828736
捐赠科研通 4324624
什么是DOI,文献DOI怎么找? 2373757
邀请新用户注册赠送积分活动 1369166
关于科研通互助平台的介绍 1333195