已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semantic Disentanglement Adversarial Hashing for Cross-Modal Retrieval

散列函数 计算机科学 特征哈希 人工智能 判别式 模态(人机交互) 语义鸿沟 模式识别(心理学) 理论计算机科学 图像检索 双重哈希 哈希表 图像(数学) 计算机安全
作者
Min Meng,Jiaxuan Sun,Jigang Liu,Jun Yu,Jigang Wu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1914-1926 被引量:14
标识
DOI:10.1109/tcsvt.2023.3293104
摘要

Cross-modal hashing has gained considerable attention in cross-modal retrieval due to its low storage cost and prominent computational efficiency. However, preserving more semantic information in the compact hash codes to bridge the modality gap still remains challenging. Most existing methods unconsciously neglect the influence of modality-private information on semantic embedding discrimination, leading to unsatisfactory retrieval performance. In this paper, we propose a novel deep cross-modal hashing method, called Semantic Disentanglement Adversarial Hashing (SDAH), to tackle these challenges for cross-modal retrieval. Specifically, SDAH is designed to decouple the original features of each modality into modality-common features with semantic information and modality-private features with disturbing information. After the preliminary decoupling, the modality-private features are shuffled and treated as positive interactions to enhance the learning of modality-common features, which can significantly boost the discriminative and robustness of semantic embeddings. Moreover, the variational information bottleneck is introduced in the hash feature learning process, which can avoid the loss of a large amount of semantic information caused by the high-dimensional feature compression. Finally, the discriminative and compact hash codes can be computed directly from the hash features. A large number of comparative and ablation experiments show that SDAH achieves superior performance than other state-ofthe- art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助lizhiqian2024采纳,获得10
刚刚
1秒前
三水完成签到,获得积分10
1秒前
3秒前
ddli发布了新的文献求助10
5秒前
6秒前
rynchee完成签到 ,获得积分10
7秒前
机灵眼神发布了新的文献求助10
8秒前
8秒前
huangzitong发布了新的文献求助10
11秒前
12秒前
搜集达人应助lizhiqian2024采纳,获得10
16秒前
21秒前
酷波er应助wshh采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
英俊的铭应助科研通管家采纳,获得20
26秒前
丘比特应助科研通管家采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
思源应助科研通管家采纳,获得10
26秒前
26秒前
小刘鸭鸭发布了新的文献求助10
26秒前
26秒前
肚子圆圆的完成签到 ,获得积分10
28秒前
shimhjy应助TaoJ采纳,获得50
28秒前
1111完成签到,获得积分10
29秒前
29秒前
31秒前
lizhiqian2024发布了新的文献求助10
31秒前
轻青发布了新的文献求助10
33秒前
wshh发布了新的文献求助10
36秒前
36秒前
隐形曼青应助博修采纳,获得30
38秒前
赘婿应助怕黑的孤菱采纳,获得10
40秒前
Pendragon发布了新的文献求助10
40秒前
兰彻完成签到,获得积分10
42秒前
烟花应助轻青采纳,获得10
42秒前
所所应助小刘鸭鸭采纳,获得10
44秒前
46秒前
笨笨忆萝请问完成签到,获得积分20
46秒前
万元帅完成签到 ,获得积分10
47秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800747
求助须知:如何正确求助?哪些是违规求助? 3346292
关于积分的说明 10328703
捐赠科研通 3062711
什么是DOI,文献DOI怎么找? 1681163
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763654