Multisensor Temporal Unsupervised Domain Adaptation for Land Cover Mapping With Spatial Pseudo-Labeling and Adversarial Learning

计算机科学 背景(考古学) 土地覆盖 多样性(控制论) 领域(数学分析) 学习迁移 基本事实 封面(代数) 人工智能 遥感 数据挖掘 土地利用 地理 数学 机械工程 数学分析 土木工程 考古 工程类
作者
Emmanuel Capliez,Dino Ienco,Raffaele Gaetano,Nicolas Baghdadi,Adrien Hadj Salah,Matthieu Le Goff,Florient Chouteau
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16
标识
DOI:10.1109/tgrs.2023.3297077
摘要

With the huge variety of earth observation satellite missions available nowadays, the collection of multi-sensor remote sensing information depicting the same geographical area has become systematic in practice, paving the way to the further breakthroughs in automatic land cover mapping with the aim to support decision makers in a variety of land management applications. In this context, along with the increase in the volume of data available, the availability of ground truth data to train supervised models, which is usually time-consuming and costly, may even be more critical. In this scenario, the possibility to transfer a model learnt on a particular time span ( source domain ) to a different period of time ( target domain ), over the same geographical area, can be advantageous in terms of both cost and time efforts. However, such model transfer is challenging due to different climate, weather or environmental conditions affecting remote sensing data collected at different time periods, resulting in possible distribution shifts between the source and target domains. With the aim to cope with the multi-sensor temporal transfer scenario in the context of land cover mapping, where multi-temporal and multi-scale information are used jointly, we propose M3SPADA (Multi-sensor, Multi-temporal and Multi-scale SPatially-Aware Domain Adaptation framework), a deep learning methodology that jointly exploits self-training and adversarial learning to transfer a multi-sensor land cover classifier from a time period (year) to a different one on the same geographical area. Here, we consider the case in which each domain (source and target) is described by a pair of remote sensing data sets: a satellite image time series (SITS) of optical images and a single Very High spatial Resolution (VHR) scene. Experimental evaluation on a real-world study case located in Burkina Faso and characterized by operational constraints shows the quality of our proposal to deal with the temporal multi-sensor transfer in the context of land cover mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
画卷完成签到 ,获得积分10
刚刚
橘子的哈哈怪完成签到,获得积分10
刚刚
1秒前
magic_sweets完成签到,获得积分10
1秒前
华仔应助樱香音子采纳,获得10
2秒前
Amy完成签到,获得积分10
4秒前
加油少年完成签到,获得积分10
4秒前
大媛大靳吃地瓜完成签到,获得积分10
5秒前
小怪兽完成签到,获得积分10
10秒前
yaya完成签到 ,获得积分10
12秒前
六步郎完成签到,获得积分10
13秒前
14秒前
奔跑西木完成签到 ,获得积分10
15秒前
ForComposites完成签到,获得积分10
16秒前
鹏笑完成签到,获得积分10
16秒前
w婷完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
luluyang完成签到 ,获得积分10
18秒前
哈密哈密完成签到,获得积分10
18秒前
勤劳元瑶完成签到,获得积分10
19秒前
花卷完成签到 ,获得积分10
19秒前
rgjipeng完成签到,获得积分10
20秒前
九月完成签到,获得积分10
20秒前
悦耳的绿旋完成签到,获得积分10
21秒前
积极的乐瑶完成签到 ,获得积分10
21秒前
秃瓢完成签到,获得积分10
22秒前
山丘完成签到,获得积分10
22秒前
我爱康康文献完成签到 ,获得积分10
23秒前
公西谷芹完成签到,获得积分20
24秒前
闹闹发布了新的文献求助10
24秒前
楚寅完成签到 ,获得积分10
25秒前
zero完成签到 ,获得积分10
25秒前
眼睛大智宸完成签到,获得积分10
26秒前
活泼的大船完成签到,获得积分10
27秒前
宇文数学完成签到 ,获得积分10
27秒前
caisongliang完成签到,获得积分10
28秒前
Zurlliant完成签到,获得积分10
28秒前
烟花应助名天采纳,获得10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795639
求助须知:如何正确求助?哪些是违规求助? 3340708
关于积分的说明 10301290
捐赠科研通 3057251
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805478
科研通“疑难数据库(出版商)”最低求助积分说明 762626