Three-Dimensional Bioelectrical Impedance Spectroscopic Tomography for Visualization of Breast Tumor

支持向量机 可视化 人工智能 乳房成像 交叉验证 计算机科学 模式识别(心理学) 数学 乳腺癌 乳腺摄影术 医学 癌症 内科学
作者
Qi Deng,Jie He,Chengjun Zhu,Hao Wang,Kai Liu,Bo Sun,Jiafeng Yao
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (17): 19598-19605 被引量:3
标识
DOI:10.1109/jsen.2023.3294185
摘要

Visualization of breast tumors with 3-D bioelectrical impedance spectroscopic tomography (3D-BIST) is proposed to identify the position, size, benignity, and malignancy of breast tumors. First, to visualize in 3-D, a conical sensor is developed based on the actual shape of the breast. Second, to confirm the feasibility of the proposed method, finite element simulation is employed. The influence of different impedance spectroscopy data acquisition methods (0-, 1-, and 3-skip) and different classifiers [Linear-SVM, radial basis function-support vector machines (RBF-SVM), and k-nearest neighbors (KNN)] on the classification results are explored in the simulation. The simulation results show that the 3D-BIST method allows visualization of breast tumor types; the image correlation coefficient (ICC) of imaging results at each position is larger than 0.7 when the breast tumor diameter ${d} \ge6$ mm; the best acquisition method for impedance spectroscopy data is 3-skip acquisition; and the best classifier is Linear-SVM classifier. The accuracy of the verification set calculated by fivefold cross-validation achieved 93.5%. The accuracy of identifying benign and malignant breast tumors with ${d} \ge8$ mm exceeded 89.0% on the test set. Finally, the proposed method was experimentally validated by using three kinds of biological tissues in place of normal breast tissue, benign breast tumor, and malignant breast tumor. In conclusion, the 3D-BIST method enables 3-D visualization of breast tumors and identification of breast tumor types. The proposed method has the advantages of noninvasive and non-radiation, which is expected to be applied to the detection of breast tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助月亮采纳,获得10
刚刚
1秒前
北北发布了新的文献求助10
2秒前
所所应助孤独的寒烟采纳,获得10
4秒前
4秒前
4秒前
zhang发布了新的文献求助10
4秒前
7秒前
顾矜应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
鱼儿游完成签到 ,获得积分10
9秒前
子车茗应助科研通管家采纳,获得30
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
子车茗应助科研通管家采纳,获得30
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
李健应助科研通管家采纳,获得10
9秒前
小元发布了新的文献求助10
10秒前
10秒前
北北完成签到,获得积分10
11秒前
13秒前
SaSa发布了新的文献求助30
15秒前
待定发布了新的文献求助10
16秒前
wanci应助小元采纳,获得10
16秒前
wahoo完成签到,获得积分10
17秒前
shiwei关注了科研通微信公众号
18秒前
不倦应助llg采纳,获得10
18秒前
24秒前
勤恳冰淇淋完成签到 ,获得积分10
25秒前
Owen应助maclogos采纳,获得10
26秒前
哈哈哈哈哈完成签到 ,获得积分10
26秒前
忐忑的黑猫应助涂丁元采纳,获得10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778025
求助须知:如何正确求助?哪些是违规求助? 3323679
关于积分的说明 10215432
捐赠科研通 3038897
什么是DOI,文献DOI怎么找? 1667705
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339