设定值
模型预测控制
控制理论(社会学)
同态变换
参数统计
非线性系统
数学优化
自适应控制
数学
有界函数
鲁棒控制
计算机科学
约束满足
趋同(经济学)
控制(管理)
数学分析
统计
物理
几何学
量子力学
人工智能
概率逻辑
经济
经济增长
作者
András Sasfi,Melanie N. Zeilinger,Johannes Köhler
出处
期刊:Automatica
[Elsevier BV]
日期:2023-07-06
卷期号:155: 111169-111169
被引量:22
标识
DOI:10.1016/j.automatica.2023.111169
摘要
We present a robust adaptive model predictive control (MPC) framework for nonlinear continuous-time systems with bounded parametric uncertainty and additive disturbance. We utilize general control contraction metrics (CCMs) to parameterize a homothetic tube around a nominal prediction that contains all uncertain trajectories. Furthermore, we incorporate model adaptation using set-membership estimation. As a result, the proposed MPC formulation is applicable to a large class of nonlinear systems, reduces conservatism during online operation, and guarantees robust constraint satisfaction and convergence to a neighborhood of the desired setpoint. One of the main technical contributions is the derivation of corresponding tube dynamics based on CCMs that account for the state and input dependent nature of the model mismatch. Furthermore, we online optimize over the nominal parameter, which enables general set-membership updates for the parametric uncertainty in the MPC. Benefits of the proposed homothetic tube MPC and online adaptation are demonstrated using a numerical example involving a planar quadrotor.
科研通智能强力驱动
Strongly Powered by AbleSci AI