已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrated plasma and exosome long noncoding RNA profiling is promising for diagnosing non-small cell lung cancer

外体 逻辑回归 接收机工作特性 肺癌 医学 肿瘤科 内科学 微泡 生物信息学 生物 小RNA 基因 遗传学
作者
Na Wang,Cong Yao,Changliang Luo,Shaoping Liu,Long Wu,Weidong Hu,Qian Zhang,Yuan Rong,Chunhui Yuan,Xinghuan Wang
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
卷期号:61 (12): 2216-2228 被引量:9
标识
DOI:10.1515/cclm-2023-0291
摘要

Non-small cell lung cancer (NSCLC) accounts for more than 80 % of all lung cancers, and its 5-year survival rate can be greatly improved by early diagnosis. However, early diagnosis remains elusive because of the lack of effective biomarkers. In this study, we aimed to develop an effective diagnostic model for NSCLC based on a combination of circulating biomarkers.Tissue-deregulated long noncoding RNAs (lncRNAs) in NSCLC were identified in datasets retrieved from the Gene Expression Omnibus (GEO, n=727) and The Cancer Genome Atlas (TCGA, n=1,135) databases, and their differential expression was verified in paired local plasma and exosome samples from NSCLC patients. Subsequently, LASSO regression was used to screen for biomarkers in a large clinical population, and a logistic regression model was used to establish a multi-marker diagnostic model. The area under the receiver operating characteristic (ROC) curve (AUC), calibration plots, decision curve analysis (DCA), clinical impact curves, and integrated discrimination improvement (IDI) were used to evaluate the efficiency of the diagnostic model.Three lncRNAs-PGM5-AS1, SFTA1P, and CTA-384D8.35 were consistently expressed in online tissue datasets, plasma, and exosomes from local patients. LASSO regression identified nine variables (Plasma CTA-384D8.35, Plasma PGM5-AS1, Exosome CTA-384D8.35, Exosome PGM5-AS1, Exosome SFTA1P, Log10CEA, Log10CA125, SCC, and NSE) in clinical samples that were eventually included in the multi-marker diagnostic model. Logistic regression analysis revealed that Plasma CTA-384D8.35, exosome SFTA1P, Log10CEA, Exosome CTA-384D8.35, SCC, and NSE were independent risk factors for NSCLC (p<0.01), and their results were visualized using a nomogram to obtain personalized prediction outcomes. The constructed diagnostic model demonstrated good NSCLC prediction ability in both the training and validation sets (AUC=0.97).In summary, the constructed circulating lncRNA-based diagnostic model has good NSCLC prediction ability in clinical samples and provides a potential diagnostic tool for NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无私妙菡发布了新的文献求助10
刚刚
1秒前
自然如冰发布了新的文献求助10
7秒前
想游泳的鹰完成签到,获得积分10
7秒前
9秒前
10秒前
Zhaoyuemeng发布了新的文献求助20
11秒前
mimi完成签到,获得积分10
13秒前
智者雨人完成签到 ,获得积分10
13秒前
熊噗噗发布了新的文献求助10
14秒前
hly完成签到,获得积分10
15秒前
oscar完成签到,获得积分10
15秒前
17秒前
dongyu发布了新的文献求助10
17秒前
缺口口完成签到 ,获得积分10
18秒前
18秒前
22秒前
wrong发布了新的文献求助10
22秒前
英俊的铭应助cece采纳,获得10
23秒前
wangzian完成签到 ,获得积分10
26秒前
冷艳的语雪完成签到 ,获得积分10
27秒前
花三万俩完成签到,获得积分10
28秒前
罗文权发布了新的文献求助20
28秒前
爆米花应助强健的迎波采纳,获得30
29秒前
29秒前
Lin发布了新的文献求助10
33秒前
2223完成签到,获得积分10
33秒前
橘猫123456完成签到,获得积分10
33秒前
丘比特应助熊噗噗采纳,获得10
33秒前
38秒前
玛卡巴卡完成签到,获得积分10
38秒前
39秒前
Hello应助王威采纳,获得10
39秒前
cen完成签到,获得积分10
39秒前
Lin完成签到,获得积分10
40秒前
鱼乐乐完成签到,获得积分10
41秒前
cece发布了新的文献求助10
44秒前
45秒前
45秒前
熊噗噗完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469887
求助须知:如何正确求助?哪些是违规求助? 4572878
关于积分的说明 14337540
捐赠科研通 4499791
什么是DOI,文献DOI怎么找? 2465313
邀请新用户注册赠送积分活动 1453731
关于科研通互助平台的介绍 1428270