Characteristic Behaviors of Elementary Students in a Low Attention State During Online Learning Identified Using Electroencephalography

脑电图 计算机科学 人工智能 鉴定(生物学) 心理学 植物 精神科 生物
作者
Suhye Kim,Jung Hwan Kim,Wooseok Hyung,Suhkyung Shin,Myoung Jin Choi,Dong Hwan Kim,Chang‐Hwan Im
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 619-628
标识
DOI:10.1109/tlt.2023.3289498
摘要

With the widespread application of online education platforms, the necessity for identifying learner's mental states from webcam videos is increasing as it can be potentially applied to artificial intelligence-based automatic identification of learner's states. However, the behaviors that elementary school students frequently exhibit during online learning particularly when they are in a low attention state have rarely been investigated. This study employed electroencephalography (EEG) to continuously track changes in the learner's attention state during online learning. A new EEG index reflecting elementary students' attention level was developed using an EEG dataset acquired from 30 fourth graders during a computerized d2 test of attention. Characteristic behaviors of 24 elementary students in a low attention state were then identified from the webcam videos showing their upper bodies captured during 40-minute online lectures, with the proposed EEG index being used as a reference to determine their attention level at the time. Various characteristic behaviors were identified regarding participant's mouth, head, arms, and torso. For example, opening mouth or leaning back was observed more frequently in a low attention state than in a high attention state. It is expected that the characteristic behaviors reflecting learner's low attention state would be utilized as a useful reference in developing more interactive and effective online education systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
搜集达人应助gzsy采纳,获得10
1秒前
Avie完成签到 ,获得积分10
1秒前
元谷雪发布了新的文献求助10
1秒前
Orange应助Alicyclobacillus采纳,获得10
3秒前
3秒前
4秒前
共享精神应助jia采纳,获得10
4秒前
4秒前
绒绒发布了新的文献求助10
5秒前
fuchao发布了新的文献求助10
5秒前
5秒前
归尘发布了新的文献求助20
5秒前
王佳琪发布了新的文献求助10
6秒前
楠楠小猪完成签到,获得积分10
7秒前
7秒前
刻苦非笑发布了新的文献求助10
7秒前
7秒前
核桃发布了新的文献求助10
7秒前
9秒前
小鱼发布了新的文献求助10
9秒前
whitedawn发布了新的文献求助10
10秒前
绒绒完成签到,获得积分10
11秒前
NexusExplorer应助王佳琪采纳,获得10
11秒前
12秒前
月月完成签到,获得积分10
12秒前
fy发布了新的文献求助10
12秒前
顾矜应助littlechu采纳,获得10
12秒前
浩然山河完成签到,获得积分10
12秒前
拥你入怀完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
14秒前
科目三应助忐忑的蛋糕采纳,获得10
15秒前
Sseven发布了新的文献求助10
15秒前
16秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3905842
求助须知:如何正确求助?哪些是违规求助? 3451393
关于积分的说明 10864520
捐赠科研通 3176753
什么是DOI,文献DOI怎么找? 1754991
邀请新用户注册赠送积分活动 848619
科研通“疑难数据库(出版商)”最低求助积分说明 791153