非线性降维
降维
计算机科学
聚类分析
多维标度
歧管(流体力学)
拓扑数据分析
可视化
推论
拓扑(电路)
嵌入
标杆管理
扩散图
测地线
维数之咒
持久同源性
生物学数据
理论计算机科学
数据挖掘
人工智能
算法
数学
机器学习
生物信息学
组合数学
工程类
数学分析
业务
生物
营销
机械工程
作者
Jiangyong Wei,Bin Zhang,Qiuwang Wang,Tianshou Zhou,Tianhai Tian,Luonan Chen
标识
DOI:10.1073/pnas.2404860121
摘要
Manifold learning techniques have emerged as crucial tools for uncovering latent patterns in high-dimensional single-cell data. However, most existing dimensionality reduction methods primarily rely on 2D visualization, which can distort true data relationships and fail to extract reliable biological information. Here, we present DTNE (diffusive topology neighbor embedding), a dimensionality reduction framework that faithfully approximates manifold distance to enhance cellular relationships and dynamics. DTNE constructs a manifold distance matrix using a modified personalized PageRank algorithm, thereby preserving topological structure while enabling diverse single-cell analyses. This approach facilitates distribution-based cellular relationship analysis, pseudotime inference, and clustering within a unified framework. Extensive benchmarking against mainstream algorithms on diverse datasets demonstrates DTNE’s superior performance in maintaining geodesic distances and revealing significant biological patterns. Our results establish DTNE as a powerful tool for high-dimensional data analysis in uncovering meaningful biological insights.
科研通智能强力驱动
Strongly Powered by AbleSci AI