已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transformer-based in-context policy learning for efficient active flow control across various airfoils

翼型 计算机科学 变压器 流量控制(数据) 背景(考古学) 机械 电压 电气工程 地质学 电信 物理 工程类 古生物学
作者
Changdong Zheng,Fangfang Xie,Tingwei Ji,Hongjie Zhou,Yao Zheng
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:1001 被引量:1
标识
DOI:10.1017/jfm.2024.1133
摘要

Active flow control based on reinforcement learning has received much attention in recent years. Indeed, the requirement for substantial data for trial-and-error in reinforcement learning policies has posed a significant impediment to their practical application, which also serves as a limiting factor in the training of cross-case agents. This study proposes an in-context active flow control policy learning framework grounded in reinforcement learning data. A transformer-based policy improvement operator is set up to model the process of reinforcement learning as a causal sequence and autoregressively give actions with sufficiently long context on new unseen cases. In flow separation problems, this framework demonstrates the capability to successfully learn and apply efficient flow control strategies across various airfoil configurations. Compared with general reinforcement learning, this learning mode without the need for updating the network parameter has even higher efficiency. This study presents an effective novel technique in using a single transformer model to address the flow separation active flow control problem on different airfoils. Additionally, the study provides an innovative demonstration of incorporating reinforcement-learning-based flow control with aerodynamic shape optimization, leading to collective enhancement in performance. This method efficiently lessens the training burden of the new flow control policy during shape optimization, and opens up a promising avenue for interdisciplinary intelligent co-design of future vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助pass采纳,获得10
2秒前
团子团子猪完成签到,获得积分10
2秒前
李蕤蕤完成签到,获得积分10
3秒前
迅速的完成签到 ,获得积分10
3秒前
4秒前
871004188完成签到,获得积分10
5秒前
微笑大螃蟹完成签到 ,获得积分10
5秒前
脑洞疼应助tdtk采纳,获得10
6秒前
无语发布了新的文献求助10
6秒前
7秒前
上官若男应助等待黎明采纳,获得10
7秒前
科研小狗完成签到 ,获得积分10
7秒前
8秒前
8秒前
会玩手机的猫完成签到,获得积分10
8秒前
烟花应助科研通管家采纳,获得30
8秒前
Akim应助科研通管家采纳,获得10
8秒前
liz_应助科研通管家采纳,获得20
9秒前
大模型应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
FashionBoy应助朴实的十八采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
shi hui应助科研通管家采纳,获得20
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
一天一篇sci完成签到,获得积分10
9秒前
Yimei完成签到,获得积分10
10秒前
clp发布了新的文献求助10
10秒前
12秒前
诺亚发布了新的文献求助10
13秒前
13秒前
daidai完成签到,获得积分20
14秒前
14秒前
唐亚萍完成签到 ,获得积分10
17秒前
一盘唐僧肉完成签到,获得积分10
17秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384801
求助须知:如何正确求助?哪些是违规求助? 4507584
关于积分的说明 14028551
捐赠科研通 4417311
什么是DOI,文献DOI怎么找? 2426403
邀请新用户注册赠送积分活动 1419155
关于科研通互助平台的介绍 1397485