Estimating soil profile salinity under vegetation cover based on UAV multi-source remote sensing

植被(病理学) 植被覆盖 环境科学 封面(代数) 遥感 盐度 土壤盐分 水文学(农业) 土壤科学 地质学 生态学 土壤水分 海洋学 生物 土地利用 医学 工程类 岩土工程 病理 机械工程
作者
Zhenhai Luo,Meihua Deng,Min Tang,Rui Liu,Shaoyuan Feng,Chao Zhang,Zhen Zheng
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1): 2713-2713 被引量:9
标识
DOI:10.1038/s41598-024-82868-9
摘要

Soil salinization is the most prevalent form of land degradation in arid, semi-arid, and coastal regions of China, posing significant challenges to local crop yield, economic development, and environmental sustainability. However, limited research exists on estimating soil salinity at different depths under vegetation cover. This study employed field-controlled soil experiments to collect multi-source remote sensing data on soil salt content (SSC) at varying depths beneath barley growth. Three types of feature variables were derived from the images and filtered using the boosting decision tree (BDT) method. In addition, four machine learning algorithms coupled with seven variable combination groups were applied to establish comprehensively soil salinity estimation models. The performances of estimation model for different crop coverage ratios and soil depth were then evaluated. The results showed that the gaussian process regression (GPR) model, based on the whole variable group for depths of 0 ~ 10 cm and 30 ~ 40 cm, outperformed other models, achieving validation R2 values of 0.774 and 0.705, with RMSE values are 0.185% and 0.31%, respectively. For depths of 10 ~ 20 cm and 20 ~ 30 cm, the random forest (RF) models, incorporating spectral index and texture data, demonstrated superior accuracy with R2 values of 0.666 and 0.714. The study confirms that SSC can be quantitatively estimated at various depths using the machine learning model based on multi-source remote sensing, providing a valuable approach for monitoring soil salinization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xx发布了新的文献求助10
2秒前
opera发布了新的文献求助10
2秒前
phantom完成签到,获得积分10
2秒前
大模型应助优美的芝麻采纳,获得10
4秒前
4秒前
4秒前
Nine发布了新的文献求助10
5秒前
大模型应助留胡子的谷雪采纳,获得10
7秒前
ymmmaomao23完成签到,获得积分10
7秒前
opera完成签到,获得积分10
7秒前
Sesenta1发布了新的文献求助10
8秒前
9秒前
duang完成签到,获得积分10
9秒前
10秒前
jory完成签到,获得积分10
10秒前
Daniel2010完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
求助文献发布了新的文献求助10
13秒前
燕子发布了新的文献求助10
15秒前
16秒前
qiandaij发布了新的文献求助20
18秒前
18秒前
gggggggbao发布了新的文献求助10
19秒前
20秒前
烟花应助生动项链采纳,获得30
21秒前
21秒前
21秒前
21秒前
开朗的伊完成签到,获得积分10
22秒前
cf完成签到 ,获得积分10
22秒前
22秒前
24秒前
24秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484179
求助须知:如何正确求助?哪些是违规求助? 4584470
关于积分的说明 14398304
捐赠科研通 4514577
什么是DOI,文献DOI怎么找? 2474031
邀请新用户注册赠送积分活动 1459973
关于科研通互助平台的介绍 1433381