FMambaIR: A Hybrid State Space Model and Frequency Domain for Image Restoration

频域 图像复原 计算机科学 图像(数学) 遥感 计算机视觉 人工智能 图像处理 地质学
作者
Xin Luan,Huijie Fan,Qiang Wang,Nan Yang,Shiben Liu,Xiaofeng Li,Yandong Tang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3526927
摘要

With the development of deep learning, impressive progress has been made in the field of image restoration. The existing methods mainly rely on CNN and Transformer to obtain multi-scale feature information. However, these methods rarely integrate frequency domain information effectively during feature extraction, limiting their performance in image restoration. Additionally, few have combined Mamba with the Fourier domain for image restoration, which limits Mamba's ability to perceive global degradation in the frequency domain. Therefore, we propose a new image restoration model called FMambaIR, which utilizes the complementarity between frequency and Mamba for image restoration. The core of FMambaIR is the F-Mamba block, which combines Fourier transform and Mamba for global degradation perception modeling. Specifically, F-Mamba adopts a dual branch complementary structure, including spatial Mamba branches and Fourier frequency domain global modeling. Mamba models the long-range dependencies of the entire image features, and the frequency branch utilizes Fourier to extract global degraded features from the image. Finally, we use a forward feedback network to integrate local information, which is beneficial for improving the recovery details. We comprehensively evaluate FMambaIR on several image restoration tasks, including underwater image enhancement, remote sensing image dehazing, and low-light image enhancement. The experimental results demonstrate that FMambaIR not only achieves superior performance compared to state-of-the-art methods but also significantly reduces computational complexity. Our code is available at https://github.com/mickoluan/FMambaIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小张完成签到 ,获得积分10
2秒前
xiemeili完成签到 ,获得积分10
2秒前
cdercder应助科研通管家采纳,获得10
6秒前
合适醉蝶完成签到 ,获得积分10
7秒前
Wang发布了新的文献求助10
8秒前
17秒前
无情的宛菡完成签到 ,获得积分10
18秒前
gangxiaxuan完成签到,获得积分10
23秒前
24秒前
Orange应助lauhoihung采纳,获得10
26秒前
发个15分的完成签到 ,获得积分10
26秒前
27秒前
27秒前
njseu完成签到 ,获得积分10
28秒前
行云流水完成签到,获得积分10
30秒前
虞无声完成签到,获得积分10
32秒前
Wangyingjie5发布了新的文献求助10
33秒前
Jayzie完成签到 ,获得积分10
34秒前
大椒完成签到 ,获得积分10
36秒前
我就想看看文献完成签到 ,获得积分10
37秒前
是是是WQ完成签到 ,获得积分0
38秒前
和谐雁荷完成签到 ,获得积分0
44秒前
zokor完成签到 ,获得积分10
44秒前
轩辕德地完成签到,获得积分10
51秒前
杨宁完成签到 ,获得积分10
52秒前
跳跃的鹏飞完成签到 ,获得积分10
53秒前
mzrrong完成签到 ,获得积分10
53秒前
YJ完成签到,获得积分10
54秒前
lauhoihung完成签到,获得积分10
55秒前
舒适映寒完成签到,获得积分10
55秒前
55秒前
小白完成签到,获得积分10
58秒前
点点完成签到 ,获得积分10
59秒前
Clearly完成签到 ,获得积分10
1分钟前
唯雷完成签到,获得积分10
1分钟前
炙热的雨双完成签到 ,获得积分10
1分钟前
1分钟前
bkagyin应助唯雷采纳,获得10
1分钟前
ipcy完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10301000
捐赠科研通 3057194
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626