Network-Based Methods for Deciphering the Oxidizability of Complex Leachate DOM with •OH/O3 via Molecular Signatures

溶解有机碳 渗滤液 化学 腐植酸 环境化学 有机化学 肥料
作者
Hui Wang,Lan Wang,Thomas Seviour,Changfu Yang,Yan Xiang,Ying Zhu,Michael Palocz-Andresen,Zongsu Wei,Ziyang Lou
出处
期刊:Environmental Science & Technology [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.est.4c08840
摘要

In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by •OH/O3 using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation. Specifically, humic substances like humic acid (HA) and fulvic acid (FA) were measured to be the dominant DOM fractions in concentrated leachates, accounting for 35.9–51.7% of the total organic carbon, which was consistent with the observation by three-dimensional fluorescence spectroscopy. According to FT-ICR MS, carboxyl-rich alicyclic molecules (CRAMs) or lignin-like substances were the most abundant components, comprising 40.2–54.5% of all substances. The machine learning modeling showed that molecular weight was the most important structural factor for DOM resistance to •OH and O3 degradation (SHAP value 0.84), followed by (DBE-O)/C (0.32), S/C (0.31), and H/C (0.08). During •OH and O3 attacking, unsaturated and reduced compounds were the dominant precursors. For the molecular transformation of CRAMs-DOM, oxygen addition reactions were found to be the predominant O3-attacking process, along with the dealkyl and carboxylic acid reactions during •OH oxidation that often resulted in more complete degradation of DOM. This study proposed a new framework integrating molecular signatures and machine learning for unraveling DOM's inherent reactivity in complexity, which informs strategies for managing concentrated leachates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
135完成签到 ,获得积分10
刚刚
不闻不问发布了新的文献求助10
3秒前
研友_VZG7GZ应助messyJ采纳,获得10
7秒前
秋殇浅寞完成签到,获得积分10
9秒前
陆文灏发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
14秒前
Jomain完成签到,获得积分10
17秒前
想发sci发布了新的文献求助10
17秒前
重要的若发布了新的文献求助30
17秒前
Shaineli发布了新的文献求助30
17秒前
陆文灏完成签到,获得积分10
18秒前
tranphucthinh发布了新的文献求助10
20秒前
科研通AI6应助andy采纳,获得10
21秒前
Emma完成签到,获得积分10
22秒前
24秒前
26秒前
26秒前
完美世界应助重要的若采纳,获得10
28秒前
lyp发布了新的文献求助10
29秒前
yyy发布了新的文献求助10
30秒前
甜甜芾完成签到,获得积分10
31秒前
31秒前
34秒前
34秒前
张平安发布了新的文献求助10
34秒前
想要赚大钱完成签到 ,获得积分10
36秒前
Hello应助张果果采纳,获得10
38秒前
40秒前
43秒前
斯文麦片完成签到 ,获得积分10
45秒前
liuhongcan发布了新的文献求助50
46秒前
专注的胡萝卜完成签到 ,获得积分10
46秒前
Jack123完成签到,获得积分10
47秒前
谦让黑裤发布了新的文献求助10
47秒前
49秒前
49秒前
JFP发布了新的文献求助10
50秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Tonal intuitions in "Tristan und Isolde" / by Brian Hyer 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4333724
求助须知:如何正确求助?哪些是违规求助? 3845287
关于积分的说明 12011180
捐赠科研通 3485838
什么是DOI,文献DOI怎么找? 1913423
邀请新用户注册赠送积分活动 956610
科研通“疑难数据库(出版商)”最低求助积分说明 857302