Network-Based Methods for Deciphering the Oxidizability of Complex Leachate DOM with •OH/O3 via Molecular Signatures

溶解有机碳 渗滤液 化学 腐植酸 环境化学 有机化学 肥料
作者
Hui Wang,Lan Wang,Thomas Seviour,Changfu Yang,Yan Xiang,Ying Zhu,Michael Palocz-Andresen,Zongsu Wei,Ziyang Lou
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c08840
摘要

In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by •OH/O3 using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation. Specifically, humic substances like humic acid (HA) and fulvic acid (FA) were measured to be the dominant DOM fractions in concentrated leachates, accounting for 35.9–51.7% of the total organic carbon, which was consistent with the observation by three-dimensional fluorescence spectroscopy. According to FT-ICR MS, carboxyl-rich alicyclic molecules (CRAMs) or lignin-like substances were the most abundant components, comprising 40.2–54.5% of all substances. The machine learning modeling showed that molecular weight was the most important structural factor for DOM resistance to •OH and O3 degradation (SHAP value 0.84), followed by (DBE-O)/C (0.32), S/C (0.31), and H/C (0.08). During •OH and O3 attacking, unsaturated and reduced compounds were the dominant precursors. For the molecular transformation of CRAMs-DOM, oxygen addition reactions were found to be the predominant O3-attacking process, along with the dealkyl and carboxylic acid reactions during •OH oxidation that often resulted in more complete degradation of DOM. This study proposed a new framework integrating molecular signatures and machine learning for unraveling DOM's inherent reactivity in complexity, which informs strategies for managing concentrated leachates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
零容忍发布了新的文献求助20
刚刚
时度完成签到,获得积分10
1秒前
充电宝应助xx采纳,获得10
1秒前
Jasper应助12138采纳,获得10
1秒前
3秒前
3秒前
FashionBoy应助Shinewei采纳,获得10
4秒前
4秒前
TT完成签到,获得积分10
5秒前
今后应助zzz采纳,获得10
8秒前
9秒前
10秒前
小梦完成签到,获得积分10
10秒前
希望天下0贩的0应助Carsen采纳,获得10
10秒前
Hu关闭了Hu文献求助
10秒前
10秒前
扭扭车发布了新的文献求助10
11秒前
不要引力完成签到,获得积分10
11秒前
完美元柏完成签到,获得积分10
12秒前
12秒前
12秒前
盐盐完成签到 ,获得积分10
13秒前
13秒前
13秒前
14秒前
不样钓鱼发布了新的文献求助10
14秒前
迷路幻柏完成签到,获得积分10
15秒前
秦123发布了新的文献求助10
16秒前
17秒前
搜集达人应助Melan采纳,获得30
18秒前
Shinewei发布了新的文献求助10
19秒前
JamesPei应助不样钓鱼采纳,获得10
19秒前
Dongjie完成签到,获得积分10
19秒前
19秒前
星星与我们完成签到,获得积分10
20秒前
龙傲天发布了新的文献求助10
20秒前
20秒前
邱邵芸完成签到,获得积分10
20秒前
21秒前
21秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829407
求助须知:如何正确求助?哪些是违规求助? 3372039
关于积分的说明 10470425
捐赠科研通 3091592
什么是DOI,文献DOI怎么找? 1701274
邀请新用户注册赠送积分活动 818330
科研通“疑难数据库(出版商)”最低求助积分说明 770830