Abstract 4118735: Interpretable deep learning translation of GWAS findings for drug repurposing in Atrial Fibrillation

医学 心房颤动 药物重新定位 重新调整用途 药品 内科学 心脏病学 重症监护医学 药理学 生态学 生物
作者
Reina Tonegawa‐Kuji,Jielin Xu,Lijun Dou,Yuan Hou,John Barnard,Mina K. Chung,Feixiong Cheng
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:150 (Suppl_1)
标识
DOI:10.1161/circ.150.suppl_1.4118735
摘要

Introduction: Translating human genetic findings, such as genome-wide association studies (GWAS) to pathobiology and the discovery of therapeutic target remains a major challenge for Atrial Fibrillation (AF). We previously published a network topology-based deep learning framework to identify disease-associated genes (NETTAG). Hypothesis: By using a deep learning framework, we can efficiently identify AF risk genes, druggable targets, and candidates of repurposable drugs. Aims: To identify potential AF related genes and repurposable drug candidates using our deep learning framework. Methods: First, we collected the reported quantitative trait loci (QTLs) for AF from human heart tissues. Then, we identified the overlaps between the QTLs and the previously reported 150 AF GWAS loci in the latest meta-analysis. We previously built a comprehensive human protein-protein interactome using 18 publicly available databases, containing 351,444 unique PPIs and 17,706 proteins. Using the human protein-protein interactome and the overlaps between AF GWAS hits and QTLs, we prioritized genes and defined the genes with the top 1 % predicted score as AF risk genes (afRGs) using the NETTAG. Then, we assembled drugs from the Drugbank database relating 2,938 FDA-approved drugs or clinically investigated molecules. Using network proximity approaches to evaluate the closest distance between afRGs and a drug’s targets within the human protein-protein interactome, we computationally predicted drugs for AF using Z scores <-2.0. Results: We first collected the overlaps between AF GWAS hits and QTLs, which constituted 27 expression and 12 splicing QTLs. Via NETTAG, we identified 176 afRGs. Among the 176 predicted afRGs, 12 proteins (gene products of afRGs) have been identified as known drug targets with FDA-approved medicines. In total, 1,275 targets have been widely investigated as therapeutic targets for treating AF. Using the closest-based network proximity approach, we computationally identified 49 candidate drugs. These included drugs both reportedly potentially treating AF, such as Pioglitazone (Z=2.29), Telmisartan (Z=-2.52), Sildenafil (Z=-2.86), and those have never been reported before, such as Balsalazide (Z=-2.32). Conclusion: Using a deep learning methodology that utilized GWAS and QTL findings, we identified risk genes and repurposing drug candidates for AF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助ly普鲁卡因采纳,获得10
1秒前
哈哈镜阿姐完成签到,获得积分10
1秒前
阔达的傲MUMU完成签到 ,获得积分10
2秒前
斯文的慕儿完成签到 ,获得积分10
2秒前
和谐诗双完成签到 ,获得积分10
2秒前
ximei完成签到,获得积分10
2秒前
结实凌瑶完成签到 ,获得积分10
6秒前
风趣霆完成签到,获得积分10
6秒前
元欣完成签到 ,获得积分10
7秒前
weiwei完成签到,获得积分10
8秒前
寒冷雨竹完成签到,获得积分10
10秒前
科研通AI5应助c123采纳,获得10
10秒前
xiao发布了新的文献求助10
10秒前
落叶完成签到 ,获得积分10
11秒前
旷野完成签到,获得积分10
12秒前
zn315315完成签到,获得积分10
14秒前
徐s完成签到,获得积分10
15秒前
fei菲飞完成签到,获得积分10
16秒前
小陆完成签到 ,获得积分10
16秒前
煮梅完成签到,获得积分10
17秒前
19秒前
玛斯特尔完成签到,获得积分10
20秒前
小蘑菇应助Nietzc采纳,获得10
22秒前
zhoujy完成签到,获得积分10
22秒前
翅宝完成签到 ,获得积分10
23秒前
TRACEY完成签到,获得积分10
24秒前
石头完成签到 ,获得积分10
25秒前
黄丽完成签到,获得积分10
26秒前
Akim应助ly普鲁卡因采纳,获得10
28秒前
思源应助bull9518采纳,获得10
28秒前
科研通AI2S应助xiao采纳,获得10
29秒前
SharonYYZ完成签到,获得积分10
29秒前
清明阿龙完成签到,获得积分10
30秒前
mingjie完成签到,获得积分10
31秒前
台台发布了新的文献求助10
36秒前
Alicia完成签到,获得积分10
37秒前
37秒前
笨笨梦松发布了新的文献求助10
38秒前
ly普鲁卡因完成签到,获得积分10
38秒前
麻花精发布了新的文献求助10
39秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801096
求助须知:如何正确求助?哪些是违规求助? 3346745
关于积分的说明 10330078
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807509
科研通“疑难数据库(出版商)”最低求助积分说明 763726