Multi-algorithms analysis for pre-treatment prediction of response to transarterial chemoembolization in hepatocellular carcinoma on multiphase MRI

人工智能 机器学习 肝细胞癌 试验装置 医学 支持向量机 神经组阅片室 Lasso(编程语言) 人工神经网络 无线电技术 算法 放射科 计算机科学 内科学 神经学 精神科 万维网
作者
Mingzhen Chen,Chunli Kong,Enqi Qiao,Yaning Chen,Weiyue Chen,Xiaole Jiang,Shiji Fang,Dengke Zhang,Minjiang Chen,Weiqian Chen,Jiansong Ji
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:14 (1) 被引量:13
标识
DOI:10.1186/s13244-023-01380-2
摘要

This study compared the accuracy of predicting transarterial chemoembolization (TACE) outcomes for hepatocellular carcinoma (HCC) patients in the four different classifiers, and comprehensive models were constructed to improve predictive performance.The subjects recruited for this study were HCC patients who had received TACE treatment from April 2016 to June 2021. All participants underwent enhanced MRI scans before and after intervention, and pertinent clinical information was collected. Registry data for the 144 patients were randomly assigned to training and test datasets. The robustness of the trained models was verified by another independent external validation set of 28 HCC patients. The following classifiers were employed in the radiomics experiment: machine learning classifiers k-nearest neighbor (KNN), support vector machine (SVM), the least absolute shrinkage and selection operator (Lasso), and deep learning classifier deep neural network (DNN).DNN and Lasso models were comparable in the training set, while DNN performed better in the test set and the external validation set. The CD model (Clinical & DNN merged model) achieved an AUC of 0.974 (95% CI: 0.951-0.998) in the training set, superior to other models whose AUCs varied from 0.637 to 0.943 (p < 0.05). The CD model generalized well on the test set (AUC = 0.831) and external validation set (AUC = 0.735).DNN model performs better than other classifiers in predicting TACE response. Integrating with clinically significant factors, the CD model may be valuable in pre-treatment counseling of HCC patients who may benefit the most from TACE intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
8R60d8应助lance采纳,获得10
1秒前
华仔应助烩面大师采纳,获得10
1秒前
思源应助负责的方盒采纳,获得10
2秒前
2秒前
3秒前
mervin完成签到,获得积分10
3秒前
3秒前
lotus完成签到,获得积分10
4秒前
4秒前
5秒前
搜集达人应助huzi采纳,获得10
5秒前
花火易逝完成签到,获得积分10
5秒前
6秒前
佳佳528发布了新的文献求助10
6秒前
香蕉觅云应助小王采纳,获得10
6秒前
杨枝甘露发布了新的文献求助20
7秒前
默客发布了新的文献求助10
7秒前
阿达完成签到 ,获得积分10
7秒前
lotus发布了新的文献求助10
8秒前
10秒前
1565028013完成签到,获得积分10
10秒前
李健的粉丝团团长应助LYL采纳,获得10
11秒前
11秒前
11秒前
所所应助shiyi采纳,获得10
12秒前
坦率的香烟完成签到,获得积分10
13秒前
13秒前
yyawkx完成签到,获得积分10
13秒前
15秒前
烩面大师发布了新的文献求助10
15秒前
16秒前
16秒前
懵懂的毛豆应助老朱采纳,获得10
16秒前
默客完成签到,获得积分10
17秒前
hululu完成签到,获得积分10
18秒前
18秒前
食化狂徒发布了新的文献求助10
18秒前
lance发布了新的文献求助30
19秒前
Kashing完成签到,获得积分10
20秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1155
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4107457
求助须知:如何正确求助?哪些是违规求助? 3645517
关于积分的说明 11548161
捐赠科研通 3352046
什么是DOI,文献DOI怎么找? 1841723
邀请新用户注册赠送积分活动 908289
科研通“疑难数据库(出版商)”最低求助积分说明 825383