Multimodal Vaccine Distribution Network Design with Drones

无人机 冷链 极限(数学) 计算机科学 路径(计算) 继电器 分布(数学) 骨料(复合) 数学优化 运筹学 工程类 计算机网络 数学 数学分析 功率(物理) 遗传学 物理 量子力学 生物 机械工程 材料科学 复合材料
作者
Shakiba Enayati,Haitao Li,James F. Campbell,Deng Pan
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (4): 1069-1095 被引量:20
标识
DOI:10.1287/trsc.2023.1205
摘要

Childhood vaccines play a vital role in social welfare, but in hard-to-reach regions, poor transportation, and a weak cold chain limit vaccine availability. This opens the door for the use of vaccine delivery by drones (uncrewed aerial vehicles, or UAVs) with their fast transportation and reliance on little or no infrastructure. In this paper, we study the problem of strategic multimodal vaccine distribution, which simultaneously determines the locations of local distribution centers, drone bases, and drone relay stations, while obeying the cold chain time limit and drone range. Two mathematical optimization models with complementary strengths are developed. The first model considers the vaccine travel time at the aggregate level with a compact formulation, but it can be too conservative in meeting the cold chain time limit. The second model is based on the layered network framework to track the vaccine flow and travel time associated with each origin-destination (OD) pair. It allows the number of transshipments and the number of drone stops in a vaccine flow path to be limited, which reflects practical operations and can be computationally advantageous. Both models are applied for vaccine distribution network design with two types of drones in Vanuatu as a case study. Solutions with drones using our parameter settings are shown to generate large savings, with differentiated roles for large and small drones. To generalize the empirical findings and examine the performance of our models, we conduct comprehensive computational experiments to assess the sensitivity of optimal solutions and performance metrics to key problem parameters. History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics. Funding: This work was supported by the Association for Supply Chain Management (ASCM) and the University of Missouri Research Board (UMSL Award 0059109). Supplemental Material: The online supplement is available at https://doi.org/10.1287/trsc.2023.1205 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
少年梦发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
2秒前
2秒前
充电宝应助知之采纳,获得10
2秒前
2秒前
5High_0完成签到 ,获得积分10
3秒前
Freya发布了新的文献求助10
4秒前
kk完成签到,获得积分20
5秒前
nnnn发布了新的文献求助10
5秒前
5秒前
千里如画发布了新的文献求助10
6秒前
6秒前
6秒前
阔达碧空发布了新的文献求助10
6秒前
LL完成签到,获得积分10
6秒前
musei发布了新的文献求助10
7秒前
王海艳发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
少年梦完成签到,获得积分20
9秒前
看你个完成签到,获得积分10
9秒前
9秒前
科研通AI5应助qwl采纳,获得10
9秒前
随机昵称发布了新的文献求助10
10秒前
xiiin完成签到,获得积分10
10秒前
na完成签到,获得积分10
11秒前
11秒前
12秒前
Ling发布了新的文献求助10
12秒前
科研通AI5应助demo1采纳,获得10
13秒前
13秒前
猪猪hero发布了新的文献求助10
13秒前
彭于彦祖应助意而往南飞采纳,获得20
13秒前
炒饭完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4747582
求助须知:如何正确求助?哪些是违规求助? 4094602
关于积分的说明 12668626
捐赠科研通 3806740
什么是DOI,文献DOI怎么找? 2101578
邀请新用户注册赠送积分活动 1126903
关于科研通互助平台的介绍 1003479