Multimodal Vaccine Distribution Network Design with Drones

无人机 冷链 极限(数学) 计算机科学 路径(计算) 继电器 分布(数学) 骨料(复合) 数学优化 运筹学 工程类 计算机网络 数学 数学分析 功率(物理) 遗传学 物理 量子力学 生物 机械工程 材料科学 复合材料
作者
Shakiba Enayati,Haitao Li,James F. Campbell,Deng Pan
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (4): 1069-1095 被引量:26
标识
DOI:10.1287/trsc.2023.1205
摘要

Childhood vaccines play a vital role in social welfare, but in hard-to-reach regions, poor transportation, and a weak cold chain limit vaccine availability. This opens the door for the use of vaccine delivery by drones (uncrewed aerial vehicles, or UAVs) with their fast transportation and reliance on little or no infrastructure. In this paper, we study the problem of strategic multimodal vaccine distribution, which simultaneously determines the locations of local distribution centers, drone bases, and drone relay stations, while obeying the cold chain time limit and drone range. Two mathematical optimization models with complementary strengths are developed. The first model considers the vaccine travel time at the aggregate level with a compact formulation, but it can be too conservative in meeting the cold chain time limit. The second model is based on the layered network framework to track the vaccine flow and travel time associated with each origin-destination (OD) pair. It allows the number of transshipments and the number of drone stops in a vaccine flow path to be limited, which reflects practical operations and can be computationally advantageous. Both models are applied for vaccine distribution network design with two types of drones in Vanuatu as a case study. Solutions with drones using our parameter settings are shown to generate large savings, with differentiated roles for large and small drones. To generalize the empirical findings and examine the performance of our models, we conduct comprehensive computational experiments to assess the sensitivity of optimal solutions and performance metrics to key problem parameters. History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics. Funding: This work was supported by the Association for Supply Chain Management (ASCM) and the University of Missouri Research Board (UMSL Award 0059109). Supplemental Material: The online supplement is available at https://doi.org/10.1287/trsc.2023.1205 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助王帅采纳,获得10
刚刚
LLL完成签到,获得积分10
刚刚
15完成签到 ,获得积分10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
蓝天应助科研通管家采纳,获得10
1秒前
揽星色应助科研通管家采纳,获得10
1秒前
2秒前
轨迹应助科研通管家采纳,获得30
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
搜集达人应助淡淡新竹采纳,获得30
2秒前
2秒前
打打应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
蓝天应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
搜集达人应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
蓝天应助科研通管家采纳,获得10
3秒前
3秒前
思源应助科研通管家采纳,获得10
3秒前
3秒前
Hello应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助30
4秒前
活力的啤酒关注了科研通微信公众号
4秒前
4秒前
4秒前
李健的小迷弟应助Yuzhang21采纳,获得10
4秒前
4秒前
4秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721558
求助须知:如何正确求助?哪些是违规求助? 5266516
关于积分的说明 15294460
捐赠科研通 4870924
什么是DOI,文献DOI怎么找? 2615682
邀请新用户注册赠送积分活动 1565499
关于科研通互助平台的介绍 1522511