Grain size and grain boundary strength: Dominative role in electro-chemo-mechanical failure of polycrystalline solid-state electrolytes

材料科学 晶界 微晶 粒度 电解质 固态 晶界强化 机械强度 复合材料 冶金 工程物理 电极 微观结构 工程类 化学 物理化学
作者
Xingxing Jiao,Yongjing Wang,Olesya O. Kapitanova,П. В. Евдокимов,Shizhao Xiong,Zhongxiao Song,Valentyn S. Volkov,V.I. Putlayev,Xieyu Xu,Yangyang Liu
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:65: 103171-103171 被引量:1
标识
DOI:10.1016/j.ensm.2023.103171
摘要

Solid-state batteries with lithium metal anode have been accepted extensively as the competitive option to fulfill the upping requirement for safe and efficient energy devices. Nevertheless, its wide-ranging application has been impeded by the failure of solid-state electrolyte (SSE) induced by development of lithium (Li) filament. Based on the nature of polycrystalline ceramic SSE with varying grain size and boundary strength, the constitutive equation coupled with electrochemical kinetics was applied to picture the propagation of damage and corresponding disintegration caused by the development of Li filament. Based on the results, we found that the stress generated along with the growth of Li filament spreads away via the opening and sliding of grain boundary. Thus, damage occurs along grain boundaries, of which propagation behavior and damage level are controlled by grain size. Especially, over-refinement and under-refinement of grains of SSE can cause flocculent damage with inordinate damage degree and accelerate the failure time of SSE, respectively. On the other hand, the failure time is powerfully prolongated through strengthening the grain boundary of SSE. Eventually, grain size of 0.2 μm and tensile strength of grain boundary of 0.8-time-of-grain are posted as the threshold to realize the postponed failure of NASICON-based SSE. Inspiringly, electro-chemo-mechanical model in this contribution is generally applicable to other type of ceramic SSE to reveal the failure process and provide the design guideline, fostering the improvement of solid-state batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助独特的从露采纳,获得10
3秒前
sisi发布了新的文献求助10
7秒前
粱忆寒完成签到,获得积分10
7秒前
栗荔完成签到 ,获得积分10
7秒前
仁爱水之完成签到 ,获得积分10
8秒前
Reese完成签到 ,获得积分10
12秒前
shor0414完成签到 ,获得积分10
14秒前
落忆完成签到 ,获得积分10
15秒前
沉静的友灵完成签到,获得积分10
15秒前
所所应助sisi采纳,获得10
17秒前
笨笨芯发布了新的文献求助10
18秒前
20秒前
无私的芸遥完成签到,获得积分20
24秒前
24秒前
25秒前
WMT完成签到 ,获得积分10
26秒前
木木木木完成签到,获得积分10
27秒前
忧伤的八宝粥完成签到,获得积分10
29秒前
尹沐完成签到 ,获得积分10
30秒前
31秒前
xieji发布了新的文献求助10
31秒前
31秒前
Michael_li完成签到,获得积分10
35秒前
茶色玻璃发布了新的文献求助10
36秒前
Niniiii完成签到,获得积分10
38秒前
JQKing完成签到,获得积分10
38秒前
40秒前
41秒前
聪明诗槐完成签到,获得积分10
42秒前
Niniiii发布了新的文献求助10
42秒前
unchanged完成签到,获得积分10
44秒前
rong发布了新的文献求助10
46秒前
TG303完成签到,获得积分10
51秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
51秒前
SciGPT应助科研通管家采纳,获得10
51秒前
51秒前
51秒前
愤怒的咖啡完成签到,获得积分10
53秒前
急诊守夜人完成签到 ,获得积分10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779389
求助须知:如何正确求助?哪些是违规求助? 3324920
关于积分的说明 10220490
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522