已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Benchmarking Micro-action Recognition: Dataset, Methods, and Applications

动作(物理) 计算机科学 手势 任务(项目管理) 人工智能 鉴定(生物学) 标杆管理 水准点(测量) 特征(语言学) 认知心理学 人机交互 心理学 地理 生物 经济 大地测量学 管理 植物 哲学 语言学 营销 量子力学 业务 物理
作者
Dan Guo,Kun Li,Bin Hu,Yan Zhang,Meng Wang
出处
期刊:Cornell University - arXiv 被引量:6
标识
DOI:10.1109/tcsvt.2024.3358415
摘要

Micro-action is an imperceptible non-verbal behaviour characterised by low-intensity movement. It offers insights into the feelings and intentions of individuals and is important for human-oriented applications such as emotion recognition and psychological assessment. However, the identification, differentiation, and understanding of micro-actions pose challenges due to the imperceptible and inaccessible nature of these subtle human behaviors in everyday life. In this study, we innovatively collect a new micro-action dataset designated as Micro-action-52 (MA-52), and propose a benchmark named micro-action network (MANet) for micro-action recognition (MAR) task. Uniquely, MA-52 provides the whole-body perspective including gestures, upper- and lower-limb movements, attempting to reveal comprehensive micro-action cues. In detail, MA-52 contains 52 micro-action categories along with seven body part labels, and encompasses a full array of realistic and natural micro-actions, accounting for 205 participants and 22,422 video instances collated from the psychological interviews. Based on the proposed dataset, we assess MANet and other nine prevalent action recognition methods. MANet incorporates squeeze-and excitation (SE) and temporal shift module (TSM) into the ResNet architecture for modeling the spatiotemporal characteristics of micro-actions. Then a joint-embedding loss is designed for semantic matching between video and action labels; the loss is used to better distinguish between visually similar yet distinct micro-action categories. The extended application in emotion recognition has demonstrated one of the important values of our proposed dataset and method. In the future, further exploration of human behaviour, emotion, and psychological assessment will be conducted in depth. The dataset and source code are released at https://github.com/VUT-HFUT/Micro-Action.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AireenBeryl531完成签到,获得积分0
1秒前
ComeOn发布了新的文献求助10
1秒前
英姑应助星火燎原采纳,获得10
2秒前
6秒前
英姑应助三水采纳,获得30
8秒前
JamesPei应助邹友亮采纳,获得10
10秒前
十七完成签到 ,获得积分10
11秒前
hattie1135完成签到 ,获得积分10
12秒前
14秒前
lvsehx完成签到,获得积分10
14秒前
15秒前
16秒前
领导范儿应助duoduo采纳,获得10
16秒前
博雅雅雅雅雅完成签到,获得积分10
16秒前
深情安青应助宵荷采纳,获得10
26秒前
bc应助66668888采纳,获得30
27秒前
27秒前
29秒前
29秒前
30秒前
一只呆呆完成签到 ,获得积分10
31秒前
32秒前
32秒前
斯文败类应助科研通管家采纳,获得10
33秒前
Hello应助科研通管家采纳,获得10
33秒前
传奇3应助科研通管家采纳,获得10
33秒前
科目三应助科研通管家采纳,获得50
33秒前
SYLH应助科研通管家采纳,获得10
33秒前
传奇3应助科研通管家采纳,获得50
33秒前
AQI发布了新的文献求助10
33秒前
wanci应助科研通管家采纳,获得10
33秒前
NexusExplorer应助科研通管家采纳,获得10
33秒前
33秒前
小二郎应助科研通管家采纳,获得10
33秒前
33秒前
duoduo完成签到,获得积分10
34秒前
wqqq发布了新的文献求助10
34秒前
谨慎萤发布了新的文献求助10
35秒前
duoduo发布了新的文献求助10
37秒前
38秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815261
求助须知:如何正确求助?哪些是违规求助? 3359136
关于积分的说明 10400456
捐赠科研通 3076771
什么是DOI,文献DOI怎么找? 1690002
邀请新用户注册赠送积分活动 813551
科研通“疑难数据库(出版商)”最低求助积分说明 767674