已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Water quality prediction in the Yellow River source area based on the DeepTCN-GRU model

水质 预测建模 水资源 人工神经网络 卷积神经网络 深度学习 计算机科学 滞后 均方误差 机器学习 人工智能 数据挖掘 统计 数学 生态学 生物 计算机网络
作者
Qingqing Tian,Wei Luo,Lei Guo
出处
期刊:Journal of water process engineering [Elsevier BV]
卷期号:59: 105052-105052 被引量:20
标识
DOI:10.1016/j.jwpe.2024.105052
摘要

Water quality prediction is critical in water resource management. Accurate water quality prediction can detect potential water quality issues ahead of time and provides an important scientific foundation for achieving sustainable water resource management. To predict the acid-base index (pH) and total nitrogen content (TN) in water quality indicators, this study uses data from the Kaifeng Yellow River water source area to propose a deep learning combination model (DeepTCN-GRU) that combines the benefits of convolutional neural networks (CNN) and recurrent neural networks (RNN). The study analyzed the effects of data processing, different lag values, and different prediction durations on the predictive performance of the model, as well as compared the predictive ability of different deep learning models and explored their predictive performance on water quality data from different water sources. The research results found that data processing can significantly reduce noise in the data and improve the predictive ability of the model; The DeepTCN-GRU model has the best prediction performance for water quality indicators pH and TN when the lag value is 30 days and the prediction duration is 1 day; Compared to other deep learning models, the DeepTCN-GRU model reduces RMSE, MAE, and MSE metrics by at least 29.69 %, 40.21 %, and 36.03 %, R2 There has been a minimum 6.63 % gain in value; In the prediction of water quality data from different water sources using the DeepTCN-GRU model, R2 values are all above 0.9. Overall, the DeepTCN-GRU model provides significant support for Yellow River water quality monitoring and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿九发布了新的文献求助10
2秒前
王饱饱完成签到 ,获得积分10
2秒前
7秒前
9秒前
有魅力的书本完成签到 ,获得积分10
10秒前
moon发布了新的文献求助10
12秒前
上蹿下跳的猹完成签到,获得积分10
14秒前
lwm不想看文献完成签到 ,获得积分10
18秒前
jiaobu完成签到,获得积分20
19秒前
Kashing完成签到,获得积分10
20秒前
小张吃不胖完成签到 ,获得积分10
25秒前
xx完成签到 ,获得积分10
26秒前
领导范儿应助辛勤的乐曲采纳,获得10
32秒前
37秒前
37秒前
科研通AI5应助Q123ba叭采纳,获得10
38秒前
41秒前
42秒前
shaylie完成签到 ,获得积分10
43秒前
43秒前
43秒前
zhhhh发布了新的文献求助10
43秒前
46秒前
mingtian完成签到,获得积分10
46秒前
科研狗发布了新的文献求助10
46秒前
48秒前
Q123ba叭完成签到,获得积分10
48秒前
49秒前
ldykkkkk完成签到,获得积分10
51秒前
51秒前
51秒前
Q123ba叭发布了新的文献求助10
52秒前
52秒前
吴嘉俊完成签到 ,获得积分10
54秒前
andrele发布了新的文献求助10
56秒前
ldykkkkk发布了新的文献求助10
57秒前
58秒前
Bioyanggu发布了新的文献求助10
58秒前
神勇的怜菡完成签到,获得积分10
59秒前
zhhhh完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336687
关于积分的说明 10281827
捐赠科研通 3053411
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803571
科研通“疑难数据库(出版商)”最低求助积分说明 761457