Adaptive Cross-Feature Fusion Network With Inconsistency Guidance for Multi-Modal Brain Tumor Segmentation

计算机科学 人工智能 特征(语言学) 背景(考古学) 编码器 模式识别(心理学) 分割 情态动词 深度学习 水准点(测量) 模态(人机交互) 机器学习 古生物学 哲学 语言学 化学 大地测量学 高分子化学 生物 地理 操作系统
作者
Guanghui Yue,Guibin Zhuo,Tianwei Zhou,Weide Liu,Tianfu Wang,Qiuping Jiang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:8
标识
DOI:10.1109/jbhi.2023.3347556
摘要

In the context of contemporary artificial intelligence, increasing deep learning (DL) based segmentation methods have been recently proposed for brain tumor segmentation (BraTS) via analysis of multi-modal MRI. However, known DL-based works usually directly fuse the information of different modalities at multiple stages without considering the gap between modalities, leaving much room for performance improvement. In this paper, we introduce a novel deep neural network, termed ACFNet, for accurately segmenting brain tumor in multi-modal MRI. Specifically, ACFNet has a parallel structure with three encoder-decoder streams. The upper and lower streams generate coarse predictions from individual modality, while the middle stream integrates the complementary knowledge of different modalities and bridges the gap between them to yield fine prediction. To effectively integrate the complementary information, we propose an adaptive cross-feature fusion (ACF) module at the encoder that first explores the correlation information between the feature representations from upper and lower streams and then refines the fused correlation information. To bridge the gap between the information from multi-modal data, we propose a prediction inconsistency guidance (PIG) module at the decoder that helps the network focus more on error-prone regions through a guidance strategy when incorporating the features from the encoder. The guidance is obtained by calculating the prediction inconsistency between upper and lower streams and highlights the gap between multi-modal data. Extensive experiments on the BraTS 2020 dataset show that ACFNet is competent for the BraTS task with promising results and outperforms six mainstream competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白衣轻叹发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
盼盼法式小面包完成签到 ,获得积分10
2秒前
3秒前
Li完成签到,获得积分10
4秒前
123465完成签到,获得积分10
4秒前
4秒前
思源应助Jayee采纳,获得30
5秒前
lml发布了新的文献求助10
5秒前
dong应助心落失采纳,获得10
5秒前
都选C发布了新的文献求助10
5秒前
乘风破浪完成签到,获得积分10
6秒前
大男发布了新的文献求助30
6秒前
6秒前
念初完成签到 ,获得积分10
6秒前
2GO完成签到 ,获得积分10
7秒前
7秒前
VitoLi发布了新的文献求助10
7秒前
Philadelphus发布了新的文献求助10
7秒前
upupup发布了新的文献求助10
7秒前
修张加油完成签到,获得积分20
8秒前
xuejiajia完成签到 ,获得积分10
9秒前
9秒前
juanwu发布了新的文献求助10
9秒前
9秒前
小郭完成签到,获得积分20
12秒前
12秒前
思思发布了新的文献求助10
12秒前
某只羊完成签到 ,获得积分10
13秒前
14秒前
思源应助Pom采纳,获得10
14秒前
15秒前
都选C完成签到,获得积分10
15秒前
儒雅的巧曼完成签到,获得积分10
16秒前
16秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497645
关于积分的说明 11088172
捐赠科研通 3228209
什么是DOI,文献DOI怎么找? 1784718
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801281