Improving prediction of soil heavy metal(loid) concentration by developing a combined Co-kriging and geographically and temporally weighted regression (GTWR) model

克里金 环境化学 环境科学 污染 土壤污染 回归分析 化学 土壤科学 污染 数学 土壤水分 统计 生态学 生物
作者
Huijuan Wang,Menglu Zhao,Xinmiao Huang,Xiaoyong Song,Boya Cai,Rui Tang,Jiaxun Sun,Zilin Han,Jing Yang,Yafeng Liu,Zhengqiu Fan
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:468: 133745-133745 被引量:15
标识
DOI:10.1016/j.jhazmat.2024.133745
摘要

The study of heavy metal(loid) (HM) contamination in soil using extensive data obtained from published literature is an economical and convenient method. However, the uneven distribution of these data in time and space limits their direct applicability. Therefore, based on the concentration data obtained from the published literature (2000-2020), we investigated the relationship between soil HM accumulation and various anthropogenic activities, developed a hybrid model to predict soil HM concentrations, and then evaluated their ecological risks. The results demonstrated that various anthropogenic activities were the main cause of soil HM accumulation using Geographically and temporally weighted regression (GTWR) model. The hybrid Co-kriging + GTWR model, which incorporates two of the most influential auxiliary variables, can improve the accuracy and reliability of predicting HM concentrations. The predicted concentrations of eight HMs all exceeded the background values for soil environment in China. The results of the ecological risk assessment revealed that five HMs accounted for more than 90% of the area at the "High risk" level (RQ ≥ 1), with the descending order of Ni (100%) = Cu (100%) > As (98.73%) > Zn (95.50%) > Pb (94.90%). This study provides a novel approach to environmental pollution research using the published data. This study provides new ideas for accurate soil HM spatial concentration prediction and ecological risk based on Co-kriging and GTWR models, which assign spatial and temporal heterogeneity of socio-economic activities to the process of exploring the influencing factors of HM accumulation. Our study introduces a fresh perspective for conducting large-scale pollutant studies using published data, and also provides scientific support for decision makers to develop pollution management strategies and reduce management costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领导范儿应助球球采纳,获得10
2秒前
3秒前
爆炸米花发布了新的文献求助10
3秒前
学习完成签到 ,获得积分10
4秒前
zqj发布了新的文献求助30
7秒前
gsgg完成签到 ,获得积分20
7秒前
OB发布了新的文献求助10
9秒前
轨迹完成签到,获得积分20
14秒前
研友_VZG7GZ应助四木采纳,获得10
15秒前
日暮里完成签到,获得积分10
15秒前
加油杨完成签到 ,获得积分10
15秒前
16秒前
Leonardi应助李大侠采纳,获得150
17秒前
zqj完成签到,获得积分10
18秒前
彭于晏应助gsgg采纳,获得10
19秒前
OB完成签到,获得积分10
21秒前
shu发布了新的文献求助20
22秒前
英姑应助高兴小熊猫采纳,获得10
22秒前
23秒前
23秒前
科目三应助呵呵采纳,获得10
24秒前
26秒前
pencil123完成签到,获得积分10
27秒前
29秒前
29秒前
llly完成签到,获得积分10
30秒前
Janisa发布了新的文献求助10
32秒前
轨迹发布了新的文献求助10
33秒前
最爱地瓜和虾滑完成签到 ,获得积分10
34秒前
34秒前
WHaha发布了新的文献求助10
35秒前
佐哥完成签到,获得积分10
36秒前
impending完成签到,获得积分10
37秒前
科研潜力股完成签到,获得积分20
38秒前
麦当劳信徒完成签到,获得积分10
38秒前
传统的纸飞机完成签到 ,获得积分10
38秒前
SciGPT应助马上毕业采纳,获得10
39秒前
40秒前
传奇3应助Yang采纳,获得10
42秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
聚丙烯腈纤维的辐射交联及对预氧化的影响 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3911353
求助须知:如何正确求助?哪些是违规求助? 3456993
关于积分的说明 10892588
捐赠科研通 3183315
什么是DOI,文献DOI怎么找? 1759585
邀请新用户注册赠送积分活动 851010
科研通“疑难数据库(出版商)”最低求助积分说明 792384