Construction of a Strain-Based Bayesian Network for Assessing Pipeline Risk due to Ground Movement

贝叶斯网络 计算机科学 管道(软件) 运动(音乐) 贝叶斯概率 人工智能 声学 物理 程序设计语言
作者
Colin A. Schell,Ernest Lever,Katrina M. Groth
标识
DOI:10.1115/imece2023-113465
摘要

Abstract Ground movement events pose a significant threat to buried natural gas and oil pipelines which resulted in an estimated $388 million in damages from 2002 to 2022. Strain-based design and assessment (SBDA) methods are commonly used to manage pipeline integrity in ground movement scenarios but utility companies still face many challenges in applying SBDA to pipeline integrity management. This paper presents the development process of a Bayesian network structure using SBDA methods for managing pipeline integrity in the event of ground movement hazards such as landslides and ground subsidence. The Bayesian network model proposed in this work presents a first-of-its-kind approach to: (1) integrate the multiple risk factors and data sources required to model SBDA and assess pipeline risk; (2) identify the sources of uncertainty that affect pipeline risk estimates; and (3) provide a holistic tool for addressing pipeline risks stemming from ground movement events. Quantification and performance validation of the Bayesian network is an ongoing process, but the model is expected to utilize satellite-based ground movement data, infield strain measurements, in-line inspection defect data, strain accumulation models, metallurgical data, and knowledge of the past loading envelope of the pipeline to perform a quantitative risk assessment for a network of pipelines. In this paper, a novel SBDA taxonomy is presented, analytical strain capacity equations are selected for future use, and the overall model architecture is developed to support the creation of a comprehensive and robust model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷公子发布了新的文献求助10
1秒前
认真的橘子完成签到,获得积分10
1秒前
小可爱发布了新的文献求助10
1秒前
2秒前
NexusExplorer应助贪玩的笑阳采纳,获得10
2秒前
谨慎初曼完成签到,获得积分10
2秒前
justsoso完成签到,获得积分10
3秒前
完美的书雁完成签到 ,获得积分10
3秒前
syy完成签到,获得积分20
3秒前
3秒前
3秒前
jiao发布了新的文献求助10
4秒前
赘婿应助Umar采纳,获得10
4秒前
7秒前
悠明夜月完成签到 ,获得积分10
7秒前
顺心凡发布了新的文献求助10
9秒前
9秒前
10秒前
如意完成签到,获得积分10
10秒前
Morgans00完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
14秒前
奋斗虔发布了新的文献求助10
14秒前
15秒前
顺心凡完成签到,获得积分10
15秒前
15秒前
冰魂应助jy采纳,获得10
20秒前
rrrrrrry发布了新的文献求助10
21秒前
小松松完成签到,获得积分10
21秒前
theway完成签到,获得积分10
23秒前
我是老大应助认真的橘子采纳,获得10
23秒前
Xy应助闹闹加油采纳,获得30
24秒前
syy发布了新的文献求助10
25秒前
Zephyr完成签到,获得积分10
25秒前
溶脂发布了新的文献求助10
29秒前
30秒前
31秒前
scl发布了新的文献求助10
36秒前
洁净的平灵完成签到,获得积分10
39秒前
unite 小丘完成签到,获得积分10
40秒前
不赖床的科研狗完成签到,获得积分10
40秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864191
求助须知:如何正确求助?哪些是违规求助? 3406461
关于积分的说明 10650123
捐赠科研通 3130470
什么是DOI,文献DOI怎么找? 1726369
邀请新用户注册赠送积分活动 831730
科研通“疑难数据库(出版商)”最低求助积分说明 779992