Use of MRI-based deep learning radiomics to diagnose sacroiliitis related to axial spondyloarthritis

医学 骶髂关节炎 无线电技术 轴性脊柱炎 放射科 骶髂关节 强直性脊柱炎 磁共振成像 医学物理学 外科
作者
Ke Zhang,Chaoran Liu,Jielin Pan,Yunfei Zhu,Ximeng Li,Jing Zheng,Yingying Zhan,Wenjuan Li,Shaolin Li,Guibo Luo,Guobin Hong
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:172: 111347-111347 被引量:5
标识
DOI:10.1016/j.ejrad.2024.111347
摘要

Abstract

Objectives

This study aimed to evaluate the performance of a deep learning radiomics (DLR) model, which integrates multimodal MRI features and clinical information, in diagnosing sacroiliitis related to axial spondyloarthritis (axSpA).

Material & Methods

A total of 485 patients diagnosed with sacroiliitis related to axSpA (n = 288) or non-sacroiliitis (n = 197) by sacroiliac joint (SIJ) MRI between May 2018 and October 2022 were retrospectively included in this study. The patients were randomly divided into training (n = 388) and testing (n = 97) cohorts. Data were collected using three MRI scanners. We applied a convolutional neural network (CNN) called 3D U-Net for automated SIJ segmentation. Additionally, three CNNs (ResNet50, ResNet101, and DenseNet121) were used to diagnose axSpA-related sacroiliitis using a single modality. The prediction results of all the CNN models across different modalities were integrated using a stacking method based on different algorithms to construct ensemble models, and the optimal ensemble model was used as DLR signature. A combined model incorporating DLR signature with clinical factors was developed using multivariable logistic regression. The performance of the models was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA).

Results

Automated deep learning-based segmentation and manual delineation showed good correlation. ResNet50, as the optimal basic model, achieved an area under the curve (AUC) and accuracy of 0.839 and 0.804, respectively. The combined model yielded the highest performance in diagnosing axSpA-related sacroiliitis (AUC: 0.910; accuracy: 0.856) and outperformed the best ensemble model (AUC: 0.868; accuracy: 0.825) (all P < 0.05). Moreover, the DCA showed good clinical utility in the combined model.

Conclusion

We developed a diagnostic model for axSpA-related sacroiliitis by combining the DLR signature with clinical factors, which resulted in excellent diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
starro发布了新的文献求助10
1秒前
chiaoyin999应助黑米粥采纳,获得10
3秒前
jenningseastera应助黑米粥采纳,获得10
3秒前
星辰大海应助黑米粥采纳,获得10
3秒前
Akim应助黑米粥采纳,获得10
3秒前
丘比特应助黑米粥采纳,获得10
3秒前
Owen应助黑米粥采纳,获得30
3秒前
科研通AI5应助黑米粥采纳,获得10
3秒前
4秒前
5秒前
Whalen完成签到,获得积分10
6秒前
赘婿应助思敏采纳,获得10
11秒前
隐形曼青应助ZW采纳,获得10
12秒前
Akim应助starro采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
22秒前
niu应助科研通管家采纳,获得10
22秒前
24秒前
25秒前
Dr W完成签到 ,获得积分0
28秒前
29秒前
思敏发布了新的文献求助10
29秒前
加到几点呢完成签到,获得积分10
31秒前
请问发布了新的文献求助10
33秒前
无奈的豆沙包完成签到 ,获得积分10
33秒前
CodeCraft应助最棒哒采纳,获得10
33秒前
满意机器猫完成签到 ,获得积分10
37秒前
advance发布了新的文献求助10
42秒前
自由寻冬完成签到 ,获得积分10
43秒前
打打应助xi采纳,获得10
44秒前
47秒前
云墨完成签到 ,获得积分10
50秒前
加鲁鲁完成签到 ,获得积分10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777971
求助须知:如何正确求助?哪些是违规求助? 3323559
关于积分的说明 10214919
捐赠科研通 3038747
什么是DOI,文献DOI怎么找? 1667634
邀请新用户注册赠送积分活动 798254
科研通“疑难数据库(出版商)”最低求助积分说明 758315