Transformer-Based Autoencoder Framework for Nonlinear Hyperspectral Anomaly Detection

高光谱成像 异常检测 自编码 计算机科学 模式识别(心理学) 人工智能 非线性系统 像素 编码器 探测器 算法 物理 深度学习 量子力学 电信 操作系统
作者
Ziyu Wu,Bin Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:38
标识
DOI:10.1109/tgrs.2024.3361469
摘要

Recently, the autoencoder (AE) has received significant attention in the hyperspectral anomaly detection task. However, all existing AE-based anomaly detectors operate under the linear mixing model, which cannot accurately model the nonlinear mixing phenomenon in practical hyperspectral images (HSIs). Moreover, these AE-based detectors rarely consider the spatial information between pixels, which is crucial to obtain accurate results of anomaly detection. To address the above issues, this paper proposes a transformer-based AE framework (TAEF) for nonlinear hyperspectral anomaly detection. Specifically, the proposed AE framework adopts the transformer as the encoder so that not only the local spatial information, but also the transitive global spatial information can be considered. And the extended multilinear mixing model (EMLM) is embedded into the decoder to accurately characterize the high-order nonlinear mixing phenomenon. By using this transformer-based AE framework, the background of HSIs can be reconstructed effectively. Moreover, a novel method for generating patches is proposed in this paper to support the transformer in the characterization of the transitive global spatial information. Besides, to further improve the accuracy of the background reconstruction, the local-clustering method is adopted to decrease the potential anomalies and increase the sparse backgrounds in the meantime. Finally, the anomalous level of pixel is calculated by the reconstruction error. The experimental results on various real hyperspectral datasets demonstrate that the proposed TAEF outperforms the current state-of-the-art anomaly detectors. In addition, our code is available at: https://github.com/I3ab/TAEF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茫然的最帅关注了科研通微信公众号
刚刚
1秒前
1秒前
hjabao完成签到,获得积分10
1秒前
1秒前
1秒前
透明人完成签到,获得积分10
1秒前
fanguojun完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
romio发布了新的文献求助10
1秒前
yilin发布了新的文献求助10
2秒前
yanghuiying发布了新的文献求助10
2秒前
Gideon完成签到,获得积分10
3秒前
shukq发布了新的文献求助10
4秒前
惠香香的完成签到,获得积分10
5秒前
张靖松发布了新的文献求助10
5秒前
fanguojun发布了新的文献求助30
5秒前
努力哥完成签到,获得积分10
5秒前
共享精神应助aub采纳,获得10
5秒前
明夕发布了新的文献求助10
5秒前
5秒前
慕青应助哈哈哈采纳,获得10
6秒前
shengch0234完成签到,获得积分10
7秒前
万能图书馆应助xu采纳,获得10
8秒前
Xhhaai应助新茶采纳,获得10
8秒前
燃烧的火柴完成签到,获得积分10
9秒前
KrisTina发布了新的文献求助10
10秒前
11秒前
科研通AI6.1应助燃烧的火柴采纳,获得100
12秒前
xiaoxiao完成签到 ,获得积分10
12秒前
无极微光应助ha采纳,获得20
13秒前
失眠的寄云完成签到,获得积分20
13秒前
李松林完成签到 ,获得积分10
13秒前
调皮绿竹完成签到,获得积分10
13秒前
g7001完成签到,获得积分10
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
在水一方应助笑点低南晴采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785064
求助须知:如何正确求助?哪些是违规求助? 5685309
关于积分的说明 15466430
捐赠科研通 4914115
什么是DOI,文献DOI怎么找? 2645093
邀请新用户注册赠送积分活动 1592886
关于科研通互助平台的介绍 1547281