Ego Vehicle Trajectory Prediction Based on Time-Feature Encoding and Physics-Intention Decoding

弹道 解码方法 背景(考古学) 编码(内存) 计算机科学 特征(语言学) 人工智能 一般化 控制理论(社会学) 算法 控制(管理) 数学 物理 数学分析 哲学 古生物学 生物 语言学 天文
作者
Ziyu Zhang,Chunyan Wang,Wanzhong Zhao,Mingchun Cao,Jinqiang Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 6527-6542 被引量:3
标识
DOI:10.1109/tits.2023.3344718
摘要

In the stage of man-machine cooperative driving, accurately predicting the trajectory of the ego vehicle can help intelligent system understand future risk and adjust the control authority of the man-machine, thereby improving the performance of the man-machine system and eliminating man-machine conflicts. However, existing high-performance trajectory prediction methods are more focused on fully autonomous vehicles, and it is difficult to deal with the problem of driving trajectory prediction with different risks when the driver is in the loop. So, an ego vehicle trajectory prediction method based on time-feature encoding and physics-intention decoding (TFE-PID) is proposed. Through the bidirectional enhancement of the encoding and decoding process, it can accurately predict the trajectory of the ego vehicle by using only the state data of the vehicle and the driver. In the encoding stage, time and feature information are used for dual encoding, which makes the amount of information carried in the context vector used for decoding more abundant. In the decoding stage, context vector, physical prediction data, and driver's intention are used to control the flow of information in the network, which enables the model to converge in a direction that is more consistent with the physical characteristics of the vehicle and driver's intention. The experimental results show that TFE-PID can accurately predict the trajectory of the ego vehicle under different risky driving behaviors of drivers, and has good prediction stability and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
文献菜鸟完成签到 ,获得积分10
2秒前
4秒前
Xiaoxiao应助小白采纳,获得10
4秒前
JamesPei应助liaodanling采纳,获得10
5秒前
cedar发布了新的文献求助10
5秒前
7秒前
榆木桢楠完成签到,获得积分10
8秒前
8秒前
棣棣的D发布了新的文献求助10
13秒前
小赵发布了新的文献求助10
14秒前
李爱国应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
热情的水杯完成签到,获得积分10
16秒前
文献菜鸟发布了新的文献求助30
19秒前
Akim应助yul采纳,获得30
19秒前
一行完成签到,获得积分10
24秒前
28秒前
30秒前
风筝鱼完成签到 ,获得积分10
30秒前
st完成签到,获得积分10
31秒前
深情安青应助可靠的映阳采纳,获得10
32秒前
归尘应助文献菜鸟采纳,获得10
32秒前
CipherSage应助动人的老黑采纳,获得10
33秒前
st发布了新的文献求助10
34秒前
坚定书竹发布了新的文献求助10
34秒前
科研小巨人完成签到,获得积分10
35秒前
36秒前
neonsun完成签到,获得积分10
37秒前
月亮之下完成签到 ,获得积分10
39秒前
丰富的慕卉完成签到,获得积分10
40秒前
苏苏苏发布了新的文献求助10
41秒前
42秒前
43秒前
科研通AI5应助Nancy采纳,获得10
44秒前
bc应助苏苏苏采纳,获得30
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778821
求助须知:如何正确求助?哪些是违规求助? 3324352
关于积分的说明 10218130
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668102
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758437