清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Appearance Enhancement for Camera-Captured Document Images in the Wild

计算机科学 人工智能 水准点(测量) 背景(考古学) 像素 计算机视觉 模式识别(心理学) 图像(数学) 人工神经网络 地理 大地测量学 考古
作者
Jiaxin Zhang,Lingyu Liang,Kai Ding,Fengjun Guo,Lianwen Jin
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (5): 2319-2330 被引量:5
标识
DOI:10.1109/tai.2023.3321257
摘要

Camera-captured document images usually suffer from various appearance degradations, which hamper the clarity of content and preclude subsequent analysis and recognition systems. Most existing methods are tailored for one or relatively few degradations, making them feasible only in limited scenarios. However, in real-world applications, degradations are more diverse, and different degradations may arise simultaneously in a single image. To remedy this limitation, we aimed to achieve appearance enhancement for camera-captured document images in the wild, where degradations exhibit more diversity and may coexist simultaneously within the same image. To realize this, we propose a new end-to-end neural network called GCDRNet, which consists of two cascaded subnets, GC-Net and DR-Net. The GC-Net is used for global context modeling, and the DR- Net is used for detail restoration through a multi-scale and multi-loss training strategy. To train and validate GCDRNet in real-world scenarios, we constructed a new benchmark called RealDAE, which contains 600 real-world degraded document images that are carefully annotated with pixel-wise alignment. To the best of our knowledge, RealDAE is the first dataset that targets multiple degradations in the wild. Extensive experiments validated the superiority and advancement of our GCDRNet and RealDAE compared to existing methods and datasets, respectively. In addition, experiments also demonstrated that image appearance enhancement as a pre-processing procedure can effectively improve the performance of downstream tasks, such as text detection and recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助Jiygua采纳,获得10
6秒前
11秒前
16秒前
23秒前
26秒前
ShengjuChen完成签到 ,获得积分10
35秒前
CipherSage应助袁青寒采纳,获得10
39秒前
lhl完成签到,获得积分0
41秒前
50秒前
玩泥巴的hh完成签到,获得积分10
1分钟前
1分钟前
Jiygua发布了新的文献求助10
1分钟前
kmzzy完成签到,获得积分10
1分钟前
wujiwuhui完成签到 ,获得积分10
1分钟前
汉堡包应助Jiygua采纳,获得10
1分钟前
V_I_G完成签到 ,获得积分10
1分钟前
Kapur完成签到,获得积分10
1分钟前
星辰大海应助袁青寒采纳,获得10
2分钟前
2分钟前
Ava应助袁青寒采纳,获得10
3分钟前
jkaaa完成签到,获得积分10
3分钟前
3分钟前
袁青寒发布了新的文献求助10
3分钟前
CMUSK完成签到,获得积分10
3分钟前
神勇的天问完成签到 ,获得积分10
4分钟前
4分钟前
Jiygua发布了新的文献求助10
4分钟前
赘婿应助Jiygua采纳,获得10
4分钟前
平常以云完成签到 ,获得积分10
4分钟前
4分钟前
小林完成签到 ,获得积分10
4分钟前
RylNG发布了新的文献求助10
4分钟前
RylNG完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
Una发布了新的文献求助10
5分钟前
王淳发布了新的文献求助10
5分钟前
吃的饱饱呀完成签到 ,获得积分10
5分钟前
cwanglh完成签到 ,获得积分10
5分钟前
佳佳完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509876
求助须知:如何正确求助?哪些是违规求助? 4604622
关于积分的说明 14489919
捐赠科研通 4539561
什么是DOI,文献DOI怎么找? 2487554
邀请新用户注册赠送积分活动 1469905
关于科研通互助平台的介绍 1442198