清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fake news detection: Taxonomy and comparative study

计算机科学 分类 人工智能 分类学(生物学) 特征提取 机器学习 特征(语言学) 代表(政治) 数据挖掘 语言学 哲学 植物 政治 政治学 法学 生物
作者
Faramarz Farhangian,Rafael M. O. Cruz,George D. C. Cavalcanti
出处
期刊:Information Fusion [Elsevier BV]
卷期号:103: 102140-102140 被引量:24
标识
DOI:10.1016/j.inffus.2023.102140
摘要

The proliferation of social networks has presented a significant challenge in combating the pervasive issue of fake news within modern societies. Due to the large amount of information and news produced daily in text, audio, and video, the validation and verification of this information have become crucial tasks. Leveraging advancements in artificial intelligence, distinguishing between fake news and factual information through automatic fake news detection systems has become more feasible. Automatic fake news detection has been explored from diverse perspectives, employing various feature extraction and classification models. Nonetheless, empirical evaluations, categorization, and comparisons of existing techniques for handling this problem remain limited. In this paper, we revisit the definitions and perspectives of fake news and propose an updated taxonomy for the field based on multiple criteria: (1) Type of features used in fake news detection; (2) Fake news detection perspectives; (3) Feature representation methods; and (4) Classification approaches. Moreover, we conduct an extensive empirical study to evaluate several feature representation techniques and classification approaches based on accuracy and computational cost. Our experimental results demonstrate that the optimal feature extraction techniques vary depending on the characteristics of the dataset. Notably, context-dependent models based on transformer models consistently exhibit superior performance. Additionally, employing transformer models as feature extraction methods, rather than solely fine-tuning the network for the downstream task, improves overall performance. Through extensive error analysis, we identify that a combination of feature representation methods and classification algorithms, including classical ones, offer complementary aspects and should be considered for achieving better generalization performance while maintaining a relatively low computational cost. For further details, including source codes, figures, and datasets, please refer to our project's GitHub repository: [https://github.com/FFarhangian/Fake-news-detection-Comparative-Study].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Barid完成签到,获得积分10
7秒前
22秒前
34秒前
我啊发布了新的文献求助10
41秒前
汉堡包应助我啊采纳,获得20
47秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小小完成签到 ,获得积分10
1分钟前
科研通AI2S应助yyy采纳,获得10
1分钟前
poki完成签到 ,获得积分10
1分钟前
刘刘完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
001发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
znchick完成签到,获得积分10
3分钟前
3分钟前
maggiexjl完成签到,获得积分10
3分钟前
3分钟前
赧赧完成签到 ,获得积分10
3分钟前
3分钟前
邹醉蓝完成签到,获得积分10
4分钟前
紫苏完成签到,获得积分0
4分钟前
001关闭了001文献求助
4分钟前
爱静静完成签到,获得积分0
4分钟前
在水一方完成签到 ,获得积分10
4分钟前
CherylZhao完成签到,获得积分10
4分钟前
甜甜的tiantian完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助予秋采纳,获得10
5分钟前
宇文非笑完成签到 ,获得积分0
5分钟前
asdwind完成签到,获得积分10
5分钟前
忘忧Aquarius完成签到,获得积分10
5分钟前
001发布了新的文献求助10
6分钟前
6分钟前
我啊发布了新的文献求助20
6分钟前
凤里完成签到 ,获得积分10
6分钟前
vbnn完成签到 ,获得积分10
6分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795608
求助须知:如何正确求助?哪些是违规求助? 3340645
关于积分的说明 10300891
捐赠科研通 3057168
什么是DOI,文献DOI怎么找? 1677522
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626