Selecting Cover Images for Restaurant Reviews: AI vs. Wisdom of the Crowd

计算机科学 背景(考古学) 稀缺 封面(代数) 人工智能 领域(数学) 机器学习 利用 数据科学 万维网 计算机安全 古生物学 工程类 经济 生物 微观经济学 纯数学 机械工程 数学
作者
Warut Khern-am-nuai,Hyunji So,Maxime C. Cohen,Yossiri Adulyasak
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (1): 330-349 被引量:26
标识
DOI:10.1287/msom.2021.0531
摘要

Problem definition: Restaurant review platforms, such as Yelp and TripAdvisor, routinely receive large numbers of photos in their review submissions. These photos provide significant value for users who seek to compare restaurants. In this context, the choice of cover images (i.e., representative photos of the restaurants) can greatly influence the level of user engagement on the platform. Unfortunately, selecting these images can be time consuming and often requires human intervention. At the same time, it is challenging to develop a systematic approach to assess the effectiveness of the selected images. Methodology/results: In this paper, we collaborate with a large review platform in Asia to investigate this problem. We discuss two image selection approaches, namely crowd-based and artificial intelligence (AI)-based systems. The AI-based system we use learns complex latent image features, which are further enhanced by transfer learning to overcome the scarcity of labeled data. We collaborate with the platform to deploy our AI-based system through a randomized field experiment to carefully compare both systems. We find that the AI-based system outperforms the crowd-based counterpart and boosts user engagement by 12.43%–16.05% on average. We then conduct empirical analyses on observational data to identify the underlying mechanisms that drive the superior performance of the AI-based system. Managerial implications: Finally, we infer from our findings that the AI-based system outperforms the crowd-based system for restaurants with (i) a longer tenure on the platform, (ii) a limited number of user-generated photos, (iii) a lower star rating, and (iv) lower user engagement during the crowd-based system. Funding: The authors acknowledge financial support from the Social Sciences and Humanities Research Council [Grant 430-2020-00106]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2021.0531 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjx发布了新的文献求助10
1秒前
xiaoliuxiaoli完成签到,获得积分10
1秒前
ssswww发布了新的文献求助10
2秒前
浮游应助小苏采纳,获得10
2秒前
桐桐应助123采纳,获得10
2秒前
3秒前
愤怒的曼荷完成签到,获得积分20
3秒前
4秒前
4秒前
西大喜完成签到,获得积分10
4秒前
陈少康完成签到,获得积分10
4秒前
明理的以亦应助Colin采纳,获得200
4秒前
魏头头发布了新的文献求助10
5秒前
7秒前
GeminiWU发布了新的文献求助10
8秒前
畅快海云完成签到 ,获得积分10
8秒前
烟花应助天天采纳,获得30
8秒前
香蕉觅云应助天天采纳,获得10
8秒前
科目三应助天天采纳,获得10
8秒前
可爱的函函应助天天采纳,获得10
8秒前
科目三应助天天采纳,获得10
8秒前
科研通AI5应助天天采纳,获得10
8秒前
bkagyin应助天天采纳,获得10
8秒前
希望天下0贩的0应助天天采纳,获得10
8秒前
大盘鸡发布了新的文献求助20
9秒前
10秒前
11秒前
11秒前
12秒前
12秒前
WXY完成签到 ,获得积分10
13秒前
13秒前
ding应助怡然颦采纳,获得10
13秒前
13秒前
13秒前
14秒前
高子懿完成签到,获得积分10
15秒前
123发布了新的文献求助10
15秒前
花露水发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259600
求助须知:如何正确求助?哪些是违规求助? 4421190
关于积分的说明 13762060
捐赠科研通 4295031
什么是DOI,文献DOI怎么找? 2356695
邀请新用户注册赠送积分活动 1353099
关于科研通互助平台的介绍 1314206