Adaptive differential privacy in vertical federated learning for mobility forecasting

计算机科学 差别隐私 初始化 联合学习 特征(语言学) 趋同(经济学) 适应(眼睛) 信息隐私 人工智能 加权 机器学习 计算机安全 数据挖掘 医学 语言学 哲学 物理 放射科 光学 经济 程序设计语言 经济增长
作者
Fatima Zahra Errounda,Yan Liu
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:149: 531-546 被引量:19
标识
DOI:10.1016/j.future.2023.07.033
摘要

Differential privacy is the de-facto technique for protecting the individuals in the training dataset and the learning models in deep learning. However, the technique presents two limitations when applied to vertical federated learning, where several organizations collaborate to train a common global model. First, it treats all the training dataset features similarly regardless of the organizations’ heterogeneous privacy requirements. Second, most existing works distribute the privacy budget uniformly across training steps, disregarding the impact of the dynamic changes of local gradients on the model’s privacy and utility balance. This paper proposes the Adaptive differential privacy for Vertical Federated Learning (AdaVFL) protocol that tackles these limitations. We estimate the organization’s feature impact on the global model and design two weighting strategies that adaptively assign privacy budgets to each organization for heterogeneously protecting its features. Moreover, we carefully adjust the privacy budget to the model’s convergence at each training iteration using a closed feedback loop to improve the learning model’s utility. We experimentally evaluate AdaVFL on two public datasets (Bike New York and Yelp reviews) with a vertical federated learning framework for mobility forecasting in Pytorch. We show that the feature-level budget initialization improves the resiliency to a state-of-the-art feature privacy attack by up to 25%. Furthermore, the experimental evaluation demonstrates that the adaptive privacy budget increases the accuracy by up to 15% on average compared to the state-of-the-art budget allocation strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙行天下完成签到,获得积分10
刚刚
M95发布了新的文献求助10
刚刚
土著猫发布了新的文献求助10
刚刚
lyyyyyy完成签到 ,获得积分10
1秒前
乐观汲关注了科研通微信公众号
2秒前
2秒前
2秒前
路由器完成签到,获得积分10
3秒前
专注汲完成签到,获得积分10
3秒前
花痴的冰蓝完成签到,获得积分10
3秒前
42cyberpunk发布了新的文献求助10
3秒前
3秒前
钱钱钱发布了新的文献求助10
4秒前
名侦探柯基完成签到,获得积分10
4秒前
4秒前
冯俞淇发布了新的文献求助10
4秒前
4秒前
yin完成签到,获得积分10
4秒前
端庄断秋完成签到,获得积分10
4秒前
成就凡双应助123采纳,获得10
5秒前
江哥完成签到,获得积分10
5秒前
5秒前
李健应助荣哥儿采纳,获得10
5秒前
科目三应助荣哥儿采纳,获得10
5秒前
蓝天应助Zhou采纳,获得10
6秒前
深情安青应助苹果亦巧采纳,获得30
6秒前
7秒前
M95完成签到,获得积分10
7秒前
ccmow应助Ccccc采纳,获得10
7秒前
8秒前
WX发布了新的文献求助10
8秒前
FashionBoy应助蔡继海采纳,获得10
9秒前
忧郁豆芽发布了新的文献求助10
9秒前
9秒前
搞怪吐司完成签到,获得积分10
9秒前
9秒前
脑洞疼应助好运莲莲莲采纳,获得10
9秒前
潮汐发布了新的文献求助10
9秒前
10秒前
Jasper应助最溜皮大爷采纳,获得10
11秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582167
求助须知:如何正确求助?哪些是违规求助? 4666373
关于积分的说明 14762023
捐赠科研通 4608313
什么是DOI,文献DOI怎么找? 2528621
邀请新用户注册赠送积分活动 1497921
关于科研通互助平台的介绍 1466671