二硫化钼
过渡金属
材料科学
催化作用
硫化物
化学工程
兴奋剂
电化学
金属
硫黄
钼
纳米技术
无机化学
化学
物理化学
电极
冶金
有机化学
光电子学
工程类
作者
Ping Wang,Ting Wang,Ming Xu,Ze Gao,Hongyu Li,Bowen Li,Yuqi Wang,Chaoqun Qu,Ming Feng
标识
DOI:10.1016/j.cclet.2023.108930
摘要
Rationally designed novel cost-effective hydrogen evolution reaction (HER) electrocatalysts with controlled surface composition and advanced structural superiority is extremely critical to optimize the HER performance. Polyoxometalates (POMs) with structural diversity and adjustable element compositions represent a promising precursor for rational design and preparation of HER electrocatalysts. Herein, a series of transition metal-doped MoS2 materials with different surface engineered structures (Fe, Cr, V doping and S vacancies) (M-MoS2/CC, M = Fe, Cr and V) were fabricated by a simple hydrothermal-vulcanization strategy using Keplerate polyoxomolybdate nanoball ({Mo72Fe30}, {Mo72Cr30}, {Mo72V30}, {Mo132}) as precursors. The enlarged interlayer spacing as well as the integration of homogeneous transition metal doping and abundant sulfur vacancies endows prepared M-MoS2/CC with superior HER electrocatalytic performance and excellent long-term working stability in both acidic and alkaline media. The optimized Fe-MoS2/CC afford current densities of 10 and 50 mA/cm2 at overpotentials of 188/272 mV and 194/394 mV in 0.5 mol/L H2SO4 and 1.0 mol/L KOH aqueous solution, respectively, outperforming most of reported typical transition metal sulfide-based catalysts. This work represents an important breakthrough for POMs-mediated highly efficient transition metal sulfide-based HER electrocatalysts with wide range pH activity and may provide new options for the rational design of promising HER electrocatalysts and beyond.
科研通智能强力驱动
Strongly Powered by AbleSci AI