Localized and Balanced Efficient Incomplete Multi-view Clustering

聚类分析 约束聚类 计算机科学 相关聚类 共识聚类 CURE数据聚类算法 模糊聚类 树冠聚类算法 数据挖掘 约束(计算机辅助设计) 人工智能 数据流聚类 图形 代表(政治) 机器学习 理论计算机科学 数学 几何学 政治 政治学 法学
作者
Jiangtao Wen,Gehui Xu,Chengliang Liu,Bob Zhang,Chao Huang,Wei Wang,Yong Xu
标识
DOI:10.1145/3581783.3612545
摘要

In recent years, many incomplete multi-view clustering methods have been proposed to address the challenging unsupervised clustering issue on the multi-view data with missing views. However, most of the existing works are inapplicable to large-scale clustering task and their clustering results are unstable since these methods have high computational complexities and their results are produced by kmeans rather than their designed learning models. In this paper, we propose a new one-step incomplete multi-view clustering model, called Localized and Balanced Incomplete Multi-view Clustering (LBIMVC), to address these issues. Specifically, LBIMVC develops a new graph regularized incomplete multi-matrix-factorization model to obtain the unique clustering result by learning a consensus probability representation, where each element of the consensus representation can directly reflect the probability of the corresponding sample to the class. In addition, the proposed graph regularized model integrates geometric preserving and consensus representation learning into one term without introducing any extra constraint terms and parameters to explore the structure of data. Moreover, to avoid that samples are over divided into a few clusters, a balanced constraint is introduced to the model. Experimental results on four databases demonstrate that our method not only obtains competitive clustering performance, but also performs faster than some state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
血茗发布了新的文献求助10
1秒前
专注俊驰发布了新的文献求助30
2秒前
4秒前
顺利毕业发布了新的文献求助10
5秒前
7秒前
maohui发布了新的文献求助10
7秒前
舒克完成签到,获得积分10
7秒前
7秒前
小二郎应助顺利毕业采纳,获得10
8秒前
情怀应助脱氧核唐小姐采纳,获得10
8秒前
定格应助科研通管家采纳,获得10
8秒前
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
满意曼荷应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
阳光应助科研通管家采纳,获得10
9秒前
打打应助haixing0530采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
阳光应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
小马甲应助wuhu采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
xq应助科研通管家采纳,获得10
9秒前
佳佳应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
10秒前
风清扬应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
芋圆应助kbc采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496914
求助须知:如何正确求助?哪些是违规求助? 4594564
关于积分的说明 14445334
捐赠科研通 4527172
什么是DOI,文献DOI怎么找? 2480728
邀请新用户注册赠送积分活动 1465186
关于科研通互助平台的介绍 1437878