A Historical Surrogate Model Ensemble Assisted Bayesian Evolutionary Optimization Algorithm for Solving Expensive Many-Objective Problems

计算机科学 贝叶斯概率 进化算法 替代模型 贝叶斯优化 数学优化 人工智能 机器学习 数学
作者
Hui Liu,Jie Tian,Qian Yu,Xin Liu,Gai‐Ge Wang
标识
DOI:10.2139/ssrn.4537543
摘要

Surrogate-assisted evolutionary optimization has become a promising approach for solving expensive multi-objective optimization problems. However, as the dimension of the objective space increases, it becomes difficult to obtain a sufficient number of samples to train a high-precision surrogate model. Despite the lack of training samples, there is a significant amount of sample prediction information provided by the surrogate model. Therefore, this paper proposes a historical surrogate model ensemble-assisted Bayesian evolutionary optimization algorithm (HMBEO) to address high-dimensional many-objective optimization problems. This method fully utilizes the historical information captured by the surrogate model. Specifically, it uses promising individuals selected by historical surrogate models as parents to guide the evolution of the population. The selection of the next generation of parents considers both the convergence of the objective space and the diversity of the decision space. Additionally, an improved infill sampling strategy is introduced to select samples for original expensive evaluation. This strategy uses the maximum distance criterion to select potential individuals and supplements sample points in sparse areas to ensure good diversity of objectives. The performance of the proposed algorithm is evaluated on a set of expensive many-objective benchmark problems. Experimental results demonstrate that it outperforms four state-of-the-art surrogate-assisted evolutionary algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Aran_Zhang应助无限的铅笔采纳,获得200
3秒前
小跳完成签到,获得积分10
4秒前
Analchem发布了新的文献求助10
4秒前
江家洋发布了新的文献求助10
5秒前
慕华完成签到 ,获得积分10
6秒前
李健应助三重积分咖啡采纳,获得10
7秒前
无奈的晴发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
Noob_saibot发布了新的文献求助10
10秒前
10秒前
充电宝应助柳如花采纳,获得10
11秒前
hahhh7发布了新的文献求助10
12秒前
13秒前
14秒前
罗大海发布了新的文献求助10
15秒前
16秒前
大个应助陆未离采纳,获得30
18秒前
SYLH应助Suyi采纳,获得30
21秒前
22秒前
仙笛童神发布了新的文献求助10
22秒前
beryl关注了科研通微信公众号
23秒前
23秒前
苏姗姗发布了新的文献求助20
23秒前
25秒前
25秒前
活泼平凡发布了新的文献求助10
27秒前
无奈的晴发布了新的文献求助20
28秒前
幽幽发布了新的文献求助10
31秒前
31秒前
33秒前
dorianao应助千千要加油采纳,获得10
34秒前
无奈的晴完成签到,获得积分10
35秒前
shin0324完成签到,获得积分10
35秒前
cds发布了新的文献求助10
35秒前
36秒前
畅快城发布了新的文献求助10
39秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
China's State Ideology and the Three Gorges Dam 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903501
求助须知:如何正确求助?哪些是违规求助? 3448168
关于积分的说明 10852481
捐赠科研通 3173775
什么是DOI,文献DOI怎么找? 1753499
邀请新用户注册赠送积分活动 847767
科研通“疑难数据库(出版商)”最低求助积分说明 790432