Combining Polygenic and Proteomic Risk Scores With Clinical Risk Factors to Improve Performance for Diagnosing Absence of Coronary Artery Disease in Patients With De Novo Chest Pain

医学 冠状动脉疾病 胸痛 内科学 计算机辅助设计 曲线下面积 前瞻性队列研究 心脏病学 工程类 工程制图
作者
Peter L. Møller,Palle Duun Rohde,Jonathan Nørtoft Dahl,Laust Dupont Rasmussen,Samuel Schmidt,Louise Nissen,Victoria McGilligan,Jacob F. Bentzon,Daníel F. Guðbjartsson,Kári Stefánsson,Hilma Hólm,Simon Winther,Morten Bøttcher,Mette Nyegaard
出处
期刊:Circulation [Wolters Kluwer]
卷期号:16 (5): 442-451
标识
DOI:10.1161/circgen.123.004053
摘要

Background: Patients with de novo chest pain, referred for evaluation of possible coronary artery disease (CAD), frequently have an absence of CAD resulting in millions of tests not having any clinical impact. The objective of this study was to investigate whether polygenic risk scores and targeted proteomics improve the prediction of absence of CAD in patients with suspected CAD, when added to the PROMISE (Prospective Multicenter Imaging Study for Evaluation of Chest Pain) minimal risk score (PMRS). Methods: Genotyping and targeted plasma proteomics (N=368 proteins) were performed in 1440 patients with symptoms suspected to be caused by CAD undergoing coronary computed tomography angiography. Based on individual genotypes, a polygenic risk score for CAD (PRS CAD ) was calculated. The prediction was performed using combinations of PRS CAD , proteins, and PMRS as features in models using stability selection and machine learning. Results: Prediction of absence of CAD yielded an area under the curve of PRS CAD -model, 0.64±0.03; proteomic-model, 0.58±0.03; and PMRS model, 0.76±0.02. No significant correlation was found between the genetic and proteomic risk scores (Pearson correlation coefficient, −0.04; P =0.13). Optimal predictive ability was achieved by the full model (PRS CAD +protein+PMRS) yielding an area under the curve of 0.80±0.02 for absence of CAD, significantly better than the PMRS model alone ( P <0.001). For reclassification purpose, the full model enabled down-classification of 49% (324 of 661) of the 5% to 15% pretest probability patients and 18% (113 of 611) of >15% pretest probability patients. Conclusions: For patients with chest pain and low-intermediate CAD risk, incorporating targeted proteomics and polygenic risk scores into the risk assessment substantially improved the ability to predict the absence of CAD. Genetics and proteomics seem to add complementary information to the clinical risk factors and improve risk stratification in this large patient group. REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT02264717
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王卫完成签到,获得积分10
1秒前
empty发布了新的文献求助10
1秒前
jinxiao完成签到,获得积分20
1秒前
2秒前
科目三应助博修采纳,获得10
3秒前
鹂鹂复霖霖完成签到,获得积分10
3秒前
悦耳的亦云完成签到,获得积分20
7秒前
7秒前
传奇3应助dudu采纳,获得10
12秒前
14秒前
西瓜味的水星完成签到,获得积分10
16秒前
Cecilia_kou完成签到 ,获得积分10
17秒前
星夜疏爱美食完成签到 ,获得积分10
18秒前
songlf23发布了新的文献求助10
20秒前
21秒前
21秒前
JIANG发布了新的文献求助30
22秒前
哈哈哈完成签到,获得积分10
23秒前
24秒前
旷野发布了新的文献求助10
24秒前
哈哈哈发布了新的文献求助10
26秒前
dudu发布了新的文献求助10
26秒前
完美世界应助娇气的妙之采纳,获得10
26秒前
28秒前
wise111发布了新的文献求助10
29秒前
m李完成签到 ,获得积分10
29秒前
博修发布了新的文献求助10
33秒前
烟花应助chancy采纳,获得10
34秒前
白金之星完成签到 ,获得积分10
36秒前
XY完成签到,获得积分10
40秒前
40秒前
田様应助JIANG采纳,获得30
41秒前
42秒前
42秒前
赵雨轩完成签到 ,获得积分10
43秒前
NexusExplorer应助哈哈哈采纳,获得10
44秒前
jsdiohfsiodhg完成签到,获得积分10
46秒前
qiulong发布了新的文献求助10
46秒前
46秒前
47秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799181
求助须知:如何正确求助?哪些是违规求助? 3344881
关于积分的说明 10322160
捐赠科研通 3061343
什么是DOI,文献DOI怎么找? 1680214
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763451