A deep model towards accurate boundary location and strong generalization for medical image segmentation

计算机科学 分割 人工智能 一般化 图像分割 分类器(UML) 模式识别(心理学) 深度学习 计算机视觉 边界(拓扑) 数学 数学分析
作者
Bing Wang,Peipei Geng,Tianxu Li,Ying Yang,Xuedong Tian,Guochun Zhang,Xin Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:88: 105623-105623 被引量:3
标识
DOI:10.1016/j.bspc.2023.105623
摘要

Accurate medical image segmentation plays a crucial role in computer-assisted diagnosis and monitoring. However, due to the complexity of medical images and the limitations of image acquisition, most of the current segmentation models still face the challenges of imprecise boundary positioning and poor generalization ability, which greatly affect their application in clinical practices. To address these issues, we propose a new deep learning-based medical image semantic segmentation network (BLG-Net). To improve the accuracy of object boundary location, a Local–global module (Logo) is proposed. It uses the combination of a self-attention mechanism and a cross-attention mechanism to model intra-sample and inter-sample long-range dependencies from local and global perspectives, respectively, to help recover the spatial structures. To further enhance the generalization ability of the BLG-Net, we develop a generalization enhancement module (GEM), which can adaptively adjust the classifier weights of the network according to the features of the test images extracted during the test process to alleviate the distribution shift issues. Besides, we design a multi-granularity loss (MGL) function, which can guide the network to learn the object region and its boundary details at the pixel, patch, and map levels, respectively. Extensive experiments on five medical image segmentation tasks demonstrate the improvements of our method. We further verify the model’s generalization ability to unseen data on two other popular datasets with different modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhangzhangZZZ发布了新的文献求助10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
QAQ发布了新的文献求助10
3秒前
箱箱完成签到,获得积分10
4秒前
4秒前
w倾应助000采纳,获得30
4秒前
4秒前
星星发布了新的文献求助10
4秒前
5秒前
chen完成签到,获得积分10
5秒前
alice完成签到,获得积分10
5秒前
蓝莓酱蘸橘子完成签到 ,获得积分10
6秒前
6秒前
王佳怡完成签到,获得积分10
7秒前
帅气的念蕾完成签到,获得积分10
7秒前
炸毛小鱼完成签到,获得积分10
7秒前
7秒前
Hello应助Luu采纳,获得10
9秒前
llyu完成签到,获得积分10
9秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
炸毛小鱼发布了新的文献求助30
12秒前
ZeroSer发布了新的文献求助10
12秒前
沉住气发布了新的文献求助30
13秒前
14秒前
宗岩完成签到 ,获得积分10
14秒前
He完成签到,获得积分10
15秒前
dingxiaoye完成签到 ,获得积分10
15秒前
乐乐应助刘研采纳,获得10
15秒前
yuki完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472385
求助须知:如何正确求助?哪些是违规求助? 4574678
关于积分的说明 14347789
捐赠科研通 4502046
什么是DOI,文献DOI怎么找? 2466815
邀请新用户注册赠送积分活动 1454881
关于科研通互助平台的介绍 1429206