MechGPT, a Language-Based Strategy for Mechanics and Materials Modeling That Connects Knowledge Across Scales, Disciplines, and Modalities

计算机科学 背景(考古学) 数据科学 模式 语料库 人工智能 社会学 古生物学 社会科学 生物
作者
Markus J. Buehler
出处
期刊:Applied Mechanics Reviews [American Society of Mechanical Engineers]
卷期号:76 (2) 被引量:15
标识
DOI:10.1115/1.4063843
摘要

Abstract For centuries, researchers have sought out ways to connect disparate areas of knowledge. While early scholars (Galileo, da Vinci, etc.) were experts across fields, specialization took hold later. With the advent of Artificial Intelligence, we can now explore relationships across areas (e.g., mechanics-biology) or disparate domains (e.g., failure mechanics-art). To achieve this, we use a fine-tuned large language model (LLM), here for a subset of knowledge in multiscale materials failure. The approach includes the use of a general-purpose LLM to distill question-answer pairs from raw sources followed by LLM fine-tuning. The resulting MechGPT LLM foundation model is used in a series of computational experiments to explore its capacity for knowledge retrieval, various language tasks, hypothesis generation, and connecting knowledge across disparate areas. While the model has some ability to recall knowledge from training, we find that LLMs are particularly useful for extracting structural insights through Ontological Knowledge Graphs. These interpretable graph structures provide explanatory insights, frameworks for new research questions, and visual representations of knowledge that also can be used in retrieval-augmented generation. Three versions of MechGPT are discussed, featuring different sizes from 13 × 109 to 70 × 109 parameters, and reaching context lengths of more than 10,000 tokens. This provides ample capacity for sophisticated retrieval augmented strategies, as well as agent-based modeling where multiple LLMs interact collaboratively and/or adversarially, the incorporation of new data from the literature or web searches, as well as multimodality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dddqdong关注了科研通微信公众号
刚刚
自然紫山完成签到,获得积分10
1秒前
MaHongyang完成签到,获得积分10
1秒前
minino完成签到 ,获得积分10
1秒前
恸哭的千鸟完成签到,获得积分10
1秒前
一往而深完成签到,获得积分10
1秒前
1秒前
2秒前
ikun发布了新的文献求助10
2秒前
右旋王小二完成签到,获得积分10
2秒前
与离完成签到 ,获得积分10
3秒前
3秒前
3秒前
不知道完成签到,获得积分10
3秒前
kkkkk完成签到,获得积分10
3秒前
wang完成签到 ,获得积分10
4秒前
芥末奶半糖加冰完成签到 ,获得积分10
4秒前
和谐诗双完成签到 ,获得积分10
4秒前
1瞬间完成签到,获得积分10
5秒前
无医完成签到,获得积分10
6秒前
xiaowang完成签到,获得积分10
6秒前
ZhouYW应助不想上班了采纳,获得10
6秒前
王多肉完成签到,获得积分10
7秒前
还不如瞎写完成签到,获得积分10
7秒前
phil完成签到,获得积分10
7秒前
向阳葵发布了新的文献求助10
8秒前
Yuntao_Chen发布了新的文献求助10
8秒前
大豆终结者完成签到,获得积分10
8秒前
翊然甜周完成签到,获得积分10
9秒前
Tracy完成签到 ,获得积分10
10秒前
欣欣完成签到 ,获得积分10
10秒前
CipherSage应助综述成精采纳,获得10
10秒前
p_kunnnn完成签到,获得积分10
10秒前
爱学习的小花生完成签到,获得积分10
11秒前
cdragon完成签到,获得积分10
11秒前
科研通AI5应助dream采纳,获得10
12秒前
12秒前
GodMG完成签到,获得积分10
13秒前
遗迹小白完成签到,获得积分10
14秒前
睡到人间煮饭时完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792657
求助须知:如何正确求助?哪些是违规求助? 3336957
关于积分的说明 10282977
捐赠科研通 3053894
什么是DOI,文献DOI怎么找? 1675707
邀请新用户注册赠送积分活动 803742
科研通“疑难数据库(出版商)”最低求助积分说明 761510