点云
计算机科学
采样(信号处理)
云计算
级联
任务(项目管理)
人工智能
点(几何)
网(多面体)
人工神经网络
计算
国家(计算机科学)
数据挖掘
模式识别(心理学)
机器学习
计算机视觉
算法
数学
工程类
操作系统
滤波器(信号处理)
化学工程
系统工程
几何学
作者
Chen Chen,Hui Yuan,Hao Líu,Junhui Hou,Raouf Hamzaoui
标识
DOI:10.1109/icme55011.2023.00341
摘要
Point cloud sampling can reduce storage requirements and computation costs for various vision tasks. Traditional sampling methods, such as farthest point sampling, are not geared towards downstream tasks and may fail on such tasks. In this paper, we propose a cascade attention-based sampling network (CAS-Net), which is end-to-end trainable. Specifically, we propose an attention-based sampling module (ASM) to capture the semantic features and preserve the geometry of the original point cloud. Experimental results on the ModelNet40 dataset show that CAS-Net outperforms state-of-the-art methods in a sampling-based point cloud classification task, while preserving the geometric structure of the sampled point cloud.
科研通智能强力驱动
Strongly Powered by AbleSci AI